References

Ch. 1: Autoimmune Protocol

1 htps://pathology.jhu.edu/autoimmune/ Johns Hopkins Institute of Pathology
2 https://journal.restorativemedicine.org/index.php/journal/article/view/9/15 Zampieron, Eugene & Kamhi, Ellen. (2012). Natural Support for Autoimmune and Inflammatory Disease. Journal of Restorative Medicine. 1. 38-47. 10.14200/jrm.2012.1.1003
3 https://journal.restorativemedicine.org/index.php/journal/article/view/9/15 Bishehsari, F., Magno, E., Swanson, G., Desai, V., Voigt, R. M., Forsyth, C. B., & Keshavarzian, A. (2017). Alcohol and Gut-Derived Inflammation. Alcohol research: current reviews, 38(2), 163–171
4 https://journal.restorativemedicine.org/index.php/journal/article/view/9/15: Zampieron, Eugene & Kamhi, Ellen. (2012). Natural Support for Autoimmune and Inflammatory Disease. Journal of Restorative Medicine. 1. 38-47. 10.14200/ jrm.2012.1.1003
5 Bhardwaj, N., Katyal, P., & Sharma, A. K. (2014). Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent patents on inflammation & allergy drug discovery, 8(2), 104–117. https://doi.org/10.21 74/1872213x08666140619110657 https://pubmed.ncbi.nlm.nih.gov/24948193/
6 Bhardwaj, Neha et al. “Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum.” Recent patents on inflammation & allergy drug discovery vol. 8,2 (2014): 104-17. doi:10.2174/187221 3x08666140619110657
7 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr. v15.i6.30
8 Deshmukh, Sunil & Sridhar, K. & MK, Gupta. (2021). Hericium erinaceus -A Rich Source of Diverse Bioactive Metabolites. Fungal Biotec. 1. 10-38. 10.5943/FunBiotec/1/2/2. https://www.researchgate.net/publication/355143838
9 Mori, K., Obara, Y., Moriya, T., Inatomi, S., & Nakahata, N. (2011). Effects of Hericium erinaceus on amyloid β (25-35) peptide-induced learning and memory deficits in mice. Biomedical research (Tokyo, Japan), 32(1), 67–72. https://doi.org/10.2220/biomedres. 32.67 https://pubmed.ncbi.nlm.nih.gov/21383512/
10 https://journal.restorativemedicine.org/index.php/journal/article/view/9/15
11 Xu J, Li X, Zhang P, Li ZL, Wang Y. Antiinflammatory constituents from the roots of Smilax bockii warb. Arch Pharm Res. 2005; 28(4):395–9/
12 Spelman K, Burns J, Nichols D, Winters N, Ottersberg S, Tenborg M. Modulation of cytokine expression by traditional medicines: A review of herbal immunomodulators. Alternative Medicine Review. 2006; 11(2):128–50
13 Golan R. Optimal Wellness: Where Mainstream and Alternative Medicine Meet. 1995. Ballantine. New York
14 Sartor RB. Importance of Intestinal Mucosal Immunity and Luminal Bacterial-Cell Wall Polymers in the Etiology of Inflammatory Joint Diseases. Baillieres Clinical Rheuma. 1989; 3(2):223–45
15 Garaeva ZS, Safina NA, Tyurin YA, Kuklin VT, Zinkevich OD. Intesitnal dysbiosis as the cause of systemic endotoxemia in psoriatic patients. Vestn Dermatol Venerol. 2007(1):23–7
16 https://journal.restorativemedicine.org/index.php/journal/article/view/9/15 Bishehsari, F., Magno, E., Swanson, G., Desai, V., Voigt, R. M., Forsyth, C. B., & Keshavarzian, A. (2017). Alcohol and Gut-Derived Inflammation. Alcohol research: current reviews, 38(2), 163–171
17 https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-sambucus-nigra-l-fructus_en.pdf
18 He, J., & Giusti, M. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual review of food science and technology, 1, 163–187. https://doi.org/10.1146/annurev.food.080708.100754 https://pubmed.ncbi.nlm.nih.gov/22129334/
19 Zakay-Rones, Z., Thom, E., Wollan, T., & Wadstein, J. (2004). Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. The Journal of international medical research, 32(2), 132–140. https://doi.org/10.1177/147323000403200205 https://pubmed.ncbi.nlm.nih.gov/15080016/
20 Tiralongo, E., Wee, S. S., & Lea, R. A. (2016). Elderberry Supplementation Reduces Cold Duration and Symptoms in Air-Travellers: A Randomized, Double-Blind Placebo-Controlled Clinical Trial. Nutrients, 8(4), 182. https://doi.org/10.3390/nu8040182; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848651/
21 Wieland, L. S., Piechotta, V., Feinberg, T., Ludeman, E., Hutton, B., Kanji, S., Seely, D., & Garritty, C. (2021). Elderberry for prevention and treatment of viral respiratory illnesses: a systematic review. BMC complementary medicine and therapies, 21(1), 112. https://doi.org/10.1186/s12906-021-03283-5 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026097/
22 Wieland, L. S., Piechotta, V., Feinberg, T., Ludeman, E., Hutton, B., Kanji, S., Seely, D., & Garritty, C. (2021). Elderberry for prevention and treatment of viral respiratory illnesses: a systematic review. BMC complementary medicine and therapies, 21(1), 112. https://doi.org/10.1186/s12906-021-03283-5 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026097/
23 Kronbichler, A., Effenberger, M., Eisenhut, M., Lee, K. H., & Shin, J. I. (2020). Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view. Autoimmunity reviews, 19(7),102570. https://doi.org/10.1016/j.autrev.2020.102570 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252097/
24 https://pubmed.ncbi.nlm.nih.gov/25491337/ Gleńsk, M., Gliński, J. A., Włodarczyk, M., & Stefanowicz, P. (2014). Determination of ursolic and oleanolic acid in Sambucifructus. Chemistry & biodiversity, 11(12), 1939–1944. https://doi.org/10.1002/cbdv.201400118
25 https://neurosciencenews.com/ursolic-acid-multiple-sclerosis-16089/
26 Zhang, Y., Li, X., Ciric, B., Curtis, M. T., Chen, W. J., Rostami, A., & Zhang, G. X. (2020). A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proceedings of the National Academy of Sciences of the United States of America, 117(16), 9082–9093. https://doi.org/10.1073/pnas.2000208117; https://pubmed.ncbi.nlm.nih.gov/32253301/
27 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260130/
28 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025220/
29 https://www.healthcmi.com/Acupuncture-Continuing-Education-News/2039-covid-19-coronavirus-herbs-found-effective
30 https://pubmed.ncbi.nlm.nih.gov/30296293
31https://www.researchgate.net/publication/272020690
32 https://pubmed.ncbi.nlm.nih.gov/28283884
33 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015):105560.doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.gov/26853960/)
34 https://pubmed.ncbi.nlm.nih.gov


Ch. 2: Lupus Protocol

1 https://www.niddk.nih.gov/health-information/kidney-disease/lupus-nephritis
2 Pons-Estel GJ, Alarcón GS, Scofield L, Reinlib L, Cooper GS. Understanding the epidemiology and progression of systemic lupus erythematosus. Seminars in Arthritis and Rheumatism. 2010;39(4):257–268
3 Cross-Reaction between Gliadin and Different Food and Tissue Antigens; Vojdani, A. & Tarash, I., Food and Nutrition Sciences, 2013, 4, 20-32 http://dx.doi.org/10.4236/fns.2013.41005 Published Online January 2013 (http://www.scirp.org/journal/fns)
4 Wahls, T. L., Chenard, C. A., & Snetselaar, L. G. (2019). Review of two popular eating plans within the multiple sclerosis community: low saturated fat and modified paleolithic. Nutrients, 11(2), 352
5 Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut ss a Danger Signal for Autoimmune Diseases. Front Immunol. 2017 May 23;8:598. doi: 10.3389/fimmu.2017.00598. PMID: 28588585; PMCID: PMC5440529
6 Schneeman B. O. (2002). Gastrointestinal physiology and functions. The British journal of nutrition, 88 Suppl 2, S159–S163. https://doi.org/10.1079/BJN2002681
7 Lin Z. B. (2005). Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. Journal of pharmacological sciences, 99(2), 144–153. https://doi.org/10.1254/jphs.crj05008x
8 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.v15.i6.30
9 Pallav, K., Dowd, S. E., Villafuerte, J., Yang, X., Kabbani, T., Hansen, J., Dennis, M., Leffler, D. A., Newburg, D. S., & Kelly, C. P. (2014). Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: a randomized clinical trial. Gut microbes, 5(4), 458–467. https://doi.org/10.4161/gmic.29558
10 Lopresti, A. L., Smith, S. J., Malvi, H., & Kodgule, R. (2019). An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine, 98(37), e17186. https://doi.org/10.1097/MD.0000000000017186
11 Arring, N. M., Millstine, D., Marks, L. A., & Nail, L. M. (2018). Ginseng as a Treatment for Fatigue: A Systematic Review. Journal of alternative and complementary medicine (New York, N.Y.), 24(7), 624–633. https://doi.org/10.1089/acm.2017.0361
12 Alexandra Deters, Janina Zippel, Nils Hellenbrand, Dirk Pappai, Cathleen Possemeyer, Andreas Hensel, Aqueous extracts and polysaccharides from Marshmallow roots (Althea officinalis L.): Cellular internalisation and stimulation of cell physiology of human epithelial cells in vitro, Journal of Ethnopharmacology, Volume 127, Issue 1, 2010, Pages
62-69, ISSN 0378-8741, https://doi.org/10.1016/j.jep.2009.09.050
13 Antioxidant effects of herbal therapies used by patients with inflammatory bowel disease: an in vitro study L. Langmead,C. Dawson,C. Hawkins,N. Banna,S. Loo,D. S. RamptonFirst published: 18 January 2002 https://doi.org/10.1046/j.1365-2036.2002.01157.x
14 Hussan F, Mansor AS, Hassan SN, Tengku Nor Effendy Kamaruddin TN, Budin SB, Othman F. Anti-Inflammatory Property of Plantago major Leaf Extract Reduces the Inflammatory Reaction in Experimental Acetaminophen-Induced Liver Injury. Evid Based Complement Alternat Med. 2015;2015:347861. doi: 10.1155/2015/347861. Epub 2015 Aug 2. PMID: 26300946; PMCID: PMC4537734
15 Awaad, A. (2012, February 3). Natural products in treatment of ulcerative colitis 310 and peptic ulcer. Science Direct. Retrieved July 25, 2022, from https://www.sciencedirect.com and Zhang L, Wu X, Yang R, Chen F, Liao Y, Zhu Z, Wu Z, Sun X, Wang L. Effects of Berberine on the Gastrointestinal Microbiota. Front Cell Infect Microbiol. 2021 Feb 19;10:588517. doi: 10.3389/fcimb.2020.588517. PMID: 33680978; PMCID: PMC7933196
16 Jurenka J. S. (2009). Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alternative medicine review: a journal of clinical therapeutic, 14(2), 141–153
17 Murdaca, G., Tonacci, A., Negrini, S., Greco, M., Borro, M., Puppo, F., & Gangemi, S. (2019). Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity reviews, 18(9), 102350. https://doi.org/10.1016/j.autrev.2019.102350
18 Simopoulos A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition, 21(6), 495–505. https://doi.org/10.1080/07315724.2002.10719248
19 Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD. Gastrointestinal manifestations in systemic autoimmune diseases. Maedica (Bucur). 2011 Jan;6(1):45-51. PMID: 21977190; PMCID: PMC3150032
20 Djouder N. (2015). Boosting NAD (+) for the prevention and treatment of liver cancer. Molecular & cellular oncology, 2(4), e1001199. https://doi.org/10.1080/23723556.2014.1001199
21 Boosting NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus monocytes Jing Wu, Mariana J. Kaplan, Michael N. Sack Published January 13, 2022. Citation Information: J Clin Invest. 2022;132(5):e139828. https://doi.org/10.1172/JCI139828
22 López-Pedrera C, Villalba JM, Patiño-Trives AM, Luque-Tévar M, Barbarroja N, Aguirre MÁ, Escudero-Contreras A, Pérez-Sánchez C. Therapeutic Potential and Immunomodulatory Role of Coenzyme Q10 and Its Analogues in Systemic Autoimmune Diseases. Antioxidants (Basel). 2021 Apr 13;10(4):600. doi: 10.3390/antiox10040600. PMID: 33924642; PMCID: PMC8069673
23 López-Pedrera C, Villalba JM, Patiño-Trives AM, Luque-Tévar M, Barbarroja N, Aguirre MÁ, Escudero-Contreras A, Pérez-Sánchez C. Therapeutic Potential and Immunomodulatory Role of Coenzyme Q10 and its Analogues in Systemic Autoimmune Diseases. Antioxidants (Basel). 2021 Apr 13;10(4):600. doi: 10.3390/antiox10040600. PMID: 33924642; PMCID: PMC8069673
24 Eghdampour, F., Jahdie, F., Kheyrkhah, M., Taghizadeh, M., Naghizadeh, S., & Hagani, H. (2013). The Impact of Aloe vera and Calendula on Perineal Healing after Episiotomy in Primiparous Women: A Randomized Clinical Trial. Journal of caring sciences, 2(4), 279–286. https://doi.org/10.5681/jcs.2013.033. https://pubmed.ncbi.nlm.nih.gov/25276736/
25 Amiel, E., Ofir, R., Dudai, N., Soloway, E., Rabinsky, T., & Rachmilevitch, S. (2012). β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis), Is a Selective Apoptosis Inducer for Tumor Cell Lines. Evidence-based complementary and alternative medicine: eCAM, 2012, 872394. https://doi. org/10.1155/2012/872394 https://pubmed.ncbi.nlm.nih.gov/22567036/
26 Sniezek DP, Siddiqui IJ. Acupuncture for Treating Anxiety and Depression in Women: A Clinical Systematic Review. Med Acupunct. 2013 Jun;25(3):164-172. doi: 10.1089/acu.2012.0900. PMID: 24761171; PMCID: PMC3689180
27 Roy RA, Boucher JP, Comtois AS. Inflammatory response following a short-term course of chiropractic treatment in subjects with and without chronic low back pain. J Chiropr Med. 2010 Sep;9(3):107-14. doi: 10.1016/j.jcm.2010.06.002. PMID: 22027032; PMCID: PMC3188345
28 Wu, M. L., Yu, K. H., & Tsai, J. C. (2017). The Effectiveness of Exercise in Adults with Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis to Guide Evidence-Based Practice. Worldviews on evidence-based nursing, 14(4), 306–315. https://doi.org/10.1111/wvn.12221


Ch. 3: Multiple Sclerosis Protocol

1 Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296-301. doi:10.1126/science.abj8222
2 Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One. 2010;5(9):e12496. Published 2010 Sep 1. doi:10.1371/journal.pone.0012496
3 Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol. 2020;11:587078. Published 2020 Dec 17. doi:10.3389/fimmu.2020.587078
4 Gough SM, Casella A, Ortega KJ, Hackam AS. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr. 2021;8:782657. Published 2021 Nov 23.doi:10.3389/fnut.2021.782657
5 Bock M, Karber M, Kuhn H. Ketogenic diets attenuate cyclooxygenase and lipoxygenase gene expression in multiple sclerosis. EBioMedicine. 2018;36:293-303.doi:10.1016/j.ebiom.2018.08.057
6 Brenton JN, Banwell B, Bergqvist AGC, et al. Pilot study of a ketogenic diet in relapsing-remitting MS. Neurol Neuroimmunol Neuroinflamm. 2019;6(4):e565. Published 2019 Apr 12. doi:10.1212/NXI.0000000000000565
7 Fitzgerald KC, Vizthum D, Henry-Barron B, et al. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult Scler Relat Disord. 2018;23:33-39. doi:10.1016/j.msard.2018.05.002
8 Cignarella F, Cantoni C, Ghezzi L, et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018;27(6):1222-1235.e6.doi:10.1016/j.cmet.2018.05.006
9 Irish AK, Erickson CM, Wahls TL, Snetselaar LG, Darling WG. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: a pilot study. Degener Neurol Neuromuscul Dis.2017;7:1-18. Published 2017 Jan 4. doi:10.2147/DNND.S116949
10 Lee JE, Bisht B, Hall MJ, et al. A Multimodal, Nonpharmacologic Intervention Improves Mood and Cognitive Function in People with Multiple Sclerosis. J Am Coll Nutr. 2017;36(3):150-168. doi:10.1080/07315724.2016.1255160
11 https://www.health.harvard.edu/staying-healthy/the-truth-about-fats-bad-andgood
12 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303934/ El Soury, M., Fornasari, B. E., Carta, G., Zen, F., Haastert-Talini, K., & Ronchi, G. (2021). The Role of Dietary Nutrients in Peripheral Nerve Regeneration. International journal of molecular sciences,22(14), 7417. https://doi.org/10.3390/ijms22147417
13 Rodrigo, L., et al. “Randomised clinical trial comparing the efficacy of a gluten-free diet versus a regular diet in a series of relapsing-remitting multiple sclerosis patients.” Int. J. Neurol. Neurother 1.1 (2014): 1-6
14 Monte SM, Kril JJ. Human alcohol-related neuropathology. Acta Neuropathol. 2014;127(1):71-90. doi:10.1007/s00401-013-1233-3
15 Pakpoor J, Goldacre R, Disanto G, Giovannoni G, Goldacre MJ. Alcohol Misuse Disorders and Multiple Sclerosis Risk. JAMA Neurol. 2014;71(9):1188–1189. doi:10.1001/jamaneurol.2014.1795
16 Arneth B. Multiple Sclerosis and Smoking. Am J Med. 2020;133(7):783-788.doi:10.1016/j.amjmed.2020.03.008
17 Rosso M, Chitnis T. Association Between Cigarette Smoking and Multiple Sclerosis: A Review. JAMA Neurol. 2020;77(2):245-253. doi:10.1001/jamaneurol.2019.4271
18 Nouri, Mehrnaz et al. “Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.” PloS one vol. 9,9 e106335. 3 Sep. 2014, doi:10.1371/journal.pone.0106335. https://pubmed.ncbi.nlm.nih.gov/25184418/
19 Takewaki D, Yamamura T. Gut microbiome research in multiple sclerosis. Neurosci Res. 2021;168:28-31. doi:10.1016/j.neures.2021.05.001
20 Boziki MK, Kesidou E, Theotokis P, et al. Microbiome in Multiple Sclerosis; Where Are We, What We Know and Do Not Know. Brain Sci. 2020;10(4):234. Published 2020 Apr 14. doi:10.3390/brainsci10040234
21 Tankou SK, Regev K, Healy BC, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol. 2018;83(6):1147-1161. doi:10.1002/ana.25244
22 Moine L, Díaz de Barboza G, Pérez A, Benedetto M, Tolosa de Talamoni N. Glutamine protects intestinal calcium absorption against oxidative stress and apoptosis. Comp Biochem Physiol A Mol Integr Physiol. 2017;212:64-71. doi:10.1016/j.cbpa.2017.07.006
23 Wang B, Wu G, Zhou Z, et al. Glutamine and intestinal barrier function. Amino Acids. 2015;47(10):2143-2154. doi:10.1007/s00726-014-1773-4
24 Achamrah N, Déchelotte P, Coëffier M. Glutamine and the regulation of intestinal permeability: from bench to bedside. Curr Opin Clin Nutr Metab Care. 2017;20(1):86-91. doi:10.1097/MCO.0000000000000339
25 Swann OG, Kilpatrick M, Breslin M, Oddy WH. Dietary fiber and its associations with depression and inflammation. Nutr Rev. 2020;78(5):394-411. doi:10.1093/nutrit/nuz072
26 Chen Q, Chen O, Martins IM, et al. Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food Funct. 2017;8(3):1144-1151. doi:10.1039/c6fo01347c
27 Frasca G, Cardile V, Puglia C, Bonina C, Bonina F. Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells. Clin Exp Gastroenterol. 2012;5:61-67. doi:10.2147/CEG.S28792
28 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015):1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.gov/26853960/)
29 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.
v15.i6.30 https://pubmed.ncbi.nlm.nih.gov/24266378/
30 Kuo, Hsing-Chun et al. “Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade.” Journal of translational medicine vol. 14 78. 18 Mar. 2016
31 Mori, K., Obara, Y., Moriya, T., Inatomi, S., & Nakahata, N. (2011). Effects of Hericium erinaceus on amyloid β (25-35) peptide-induced learning and memory deficits in mice. Biomedical research (Tokyo, Japan), 32(1), 67–72. https://doi.org/10.2220/biomedres.67 https://pubmed.ncbi.nlm.nih.gov/21383512/
32 Brandalise, Federico et al. “Dietary Supplementation of Hericium erinaceus Increases Mossy Fiber-CA3 Hippocampal Neurotransmission and Recognition Memory in Wild-Type Mice.” Evidence-based complementary and alternative medicine: eCAM vol. 2017 (2017): 3864340. doi:10.1155/2017/3864340. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237458/)
33 Mori, Koichiro et al. “Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial.” Phytotherapy research: PTR vol. 23,3 (2009): 367-72. doi:10.1002/ptr.2634. https://pubmed.ncbi.nlm.nih.gov/18844328/
34 Bhardwaj, Neha et al. “Suppression of inflammatory and allergic re- 311 sponses by pharmacologically potent fungus Ganoderma lucidum.” Recent patents on inflammation & allergy drug discovery vol. 8,2 (2014): 104-17. doi:10.2174/187221
3x08666140619110657
35 Huang, Shichao et al. “Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer’s Disease.” Stem cell reports vol. 8,1 (2017): 84-94. doi:10.1016/j.stemcr.2016.12.007. https://pubmed.ncbi.nlm.nih.gov/28076758/
36 https://www.sciencedirect.com/science/article/pii/S1319562X1830192X Young Ock Kim, Hak Jae Kim, Gasem Mohammad Abu-Taweel, Junsang Oh, Gi-Ho Sung, Neuroprotective and therapeutic effect of Cordyceps militaris on ischemia-induced neuronal death and cognitive impairments, Saudi Journal of Biological Sciences, Volume 26, Issue 7,2019, Pages 1352-1357,SSN 1319-562X, https://doi.org/10.1016/j.sjbs.2018.08.011
37 Li, X. T., Li, H. C., Li, C. B., Dou, D. Q., & Gao, M. B. (2010). Protective effects on mitochondria and anti-aging activity of polysaccharides from cultivated fruiting bodies of Cordyceps militaris. The American journal of Chinese medicine, 38(6), 1093–1106. https://doi.org/10.1142/S0192415X10008494 https://pubmed.ncbi.nlm.nih.gov/21061463/
38 https://pubmed.ncbi.nlm.nih.gov/18803231/ Ji, D. B., Ye, J., Li, C. L., Wang, Y. H., Zhao, J., & Cai, S. Q. (2009). Antiaging effect of Cordyceps sinensis extract. Phytotherapy research: PTR, 23(1), 116–122. https://doi.org/10.1002/ptr.2576
39 https://pubmed.ncbi.nlm.nih.gov/20724804/ Guo, P., Kai, Q., Gao, J., Lian, Z. Q., Wu, C. M., Wu, C. A., & Zhu, H. B. (2010). Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of pharmacological sciences, 113(4), 395–403. https://doi.org/10.1254/jphs.10041fp
40 Liao H, Ye J, Gao L, Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed Pharmacother. 2021;133:110917. doi:10.1016/j.biopha.2020.110917
41 https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC6025220/
42 Sowndhararajan, K., Deepa, P., Kim, M., Park, S. J., & Kim, S. (2018). Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain sciences, 8(6), 104. https://doi.org/10.3390/brainsci8060104
43 Heo HJ, Kim DO, Choi SJ, Shin DH, Lee CY. Potent Inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid beta protein-induced neurotoxicity. J Agric Food Chem. 2004;52(13):4128-4132. doi:10.1021/jf049953x
44 He, J., & Giusti, M. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual review of food science and technology, 1, 163–187. https://doi.org/10.1146/annurev.food.080708.100754 https://pubmed.ncbi.nlm.nih.gov/22129334/
45 Wieland, L. S., Piechotta, V., Feinberg, T., Ludeman, E., Hutton, B., Kanji, S., Seely, D., & Garritty, C. (2021). Elderberry for prevention and treatment of viral respiratory illnesses: a systematic review. BMC complementary medicine and therapies, 21(1), 112. https://doi.org/10.1186/s12906-021-03283-5 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026097/
46 Wieland, L. S., Piechotta, V., Feinberg, T., Ludeman, E., Hutton, B., Kanji, S., Seely, D., & Garritty, C. (2021). Elderberry for prevention and treatment of viral respiratory illnesses: a systematic review. BMC complementary medicine and therapies, 21(1), 112. https://doi.org/10.1186/s12906-021-03283-5 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026097/
47 https://pubmed.ncbi.nlm.nih.gov/25491337/ Gleńsk, M., Gliński, J. A., Włodarczyk, M., & Stefanowicz, P. (2014). Determination of ursolic and oleanolic acid in Sambuci fructus. Chemistry & biodiversity, 11(12), 1939–1944. https://doi.org/10.1002/cbdv.201400118
48 Zhang, Y., Li, X., Ciric, B., Curtis, M. T., Chen, W. J., Rostami, A., & Zhang, G. X. (2020). A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proceedings of the National Academy of Sciences of the United States of America, 117(16), 9082–9093. https://doi.org/10.1073/pnas.2000208117 https://pubmed.ncbi.nlm.nih.gov/32253301/
49 https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7260130/
50 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025220/
51 https://www.healthcmi.com/Acupuncture-Continuing-Education-
News/2039-covid-19-coronavirus-herbs-found-effective
52 https://pubmed.ncbi.nlm.nih.gov/30296293/
53 https://www.researchgate.net/publication/272020690
54 https://pubmed.ncbi.nlm.nih.gov/28283884
55 https://www.ncbi.nlm.nih.gov/
56 Soilu-Hänninen M, Aivo J, Lindström BM, et al. A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon β-1b in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2012;83(5):565-571.
doi:10.1136/jnnp-2011-301876
57 Rotstein DL, Healy BC, Malik MT, et al. Effect of vitamin D on MS activity by disease-modifying therapy class. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e167. Published 2015 Oct 29. doi:10.1212/NXI.0000000000000167
58 Darwish H, Haddad R, Osman S, et al. Effect of Vitamin D Replacement on Cognition in Multiple Sclerosis Patients. Sci Rep. 2017;7:45926. Published 2017 Apr 4. doi:10.1038/srep45926
59 Gallai V, Sarchielli P, Trequattrini A, et al. Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J Neuroimmunol. 1995;56(2):143-153. doi:10.1016/0165-5728(94)00140-j
60 Miller A, Korem M, Almog R, Galboiz Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci. 2005;233(1-2):93-97. doi:10.1016/j.jns.2005.03.009
61 Reynolds EH, Linnell JC, Faludy JE. Multiple sclerosis associated with vitamin B12 deficiency. Arch Neurol. 1991;48(8):808-811. doi:10.1001/archneur. 1991.00530200044017
62 Khosravi-Largani M, Pourvali-Talatappeh P, Rousta AM, et al. A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis. eNeurologicalSci. 2018;10:37-44. Published 2018 Jan 28. doi:10.1016/j.ensci.2018.01.007
63 Reynolds EH. Multiple sclerosis and vitamin B12 metabolism. J Neuroimmunol.1992;40(2-3):225-230. doi:10.1016/0165-5728(92)90137-a
64 Nozari E, Ghavamzadeh S, Razazian N. The Effect of Vitamin B12 and Folic Acid Supplementation on Serum Homocysteine, Anemia Status and Quality of Life of Patients with Multiple Sclerosis. Clin Nutr Res. 2019;8(1):36-45. Published 2019 Jan 25. doi:10.7762/cnr.2019.8.1.36
65 Jin, Cy., Lee, Jd., Park, C. et al. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacol Sin 28, 1645–1651 (2007). https://doi.org/10.1111/j.1745-7254.2007.00651.x
66 Tegenge MA, Rajbhandari L, Shrestha S, Mithal A, Hosmane S, Venkatesan A. Curcumin protects axons from degeneration in the setting of local neuroinflammation. Exp Neurol. 2014;253:102-110. doi:10.1016/j.expneurol.2013.12.016
67 Kumar Ranjan Ravi , Singh Lovekesh , Thakur Amandeep , Singh Shamsher and Kumar Bhupinder*, Role of Vitamins in Neurodegenerative Diseases: A Review, CNS & Neurological Disorders - Drug Targets 2022; 21(9) . https://dx.doi.org/10.2174/1871527320666211119122150
68 Guo YE, Suo N, Cui X, Yuan Q, Xie X. Vitamin C promotes oligodendrocytes generation and remyelination. Glia. 2018;66(7):1302-1316. doi:10.1002/glia.23306
69 Bredholt M, Frederiksen JL. Zinc in Multiple Sclerosis: A Systematic Review and Meta-Analysis. ASN Neuro. 2016;8(3):1759091416651511. Published 2016 Jun 9. doi:10.1177/1759091416651511
70 Ghaiad, H.R., Nooh, M.M., El-Sawalhi, M.M. et al. Resveratrol Promotes Remyelination in Cuprizone Model of Multiple Sclerosis: Biochemical and Histological Study. Mol Neurobiol 54, 3219–3229 (2017). https://doi.org/10.1007/s12035-016-9891-5
71 Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC, Rostami A. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol. 2010;30(4):328-339. doi:10.1097/WNO.0b013e3181f7f833
72 https://pubmed.ncbi.nlm.nih.gov/
73 Sanoobar M, Eghtesadi S, Azimi A, et al. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trial. Nutr Neurosci. 2015;18(4):169-176. doi:10.1179/1476830513Y.0000000106
74 Schwalfenberg GK. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J Nutr Metab. 2021;2021:9949453. Published 2021 Jun 9. doi:10.1155/2021/9949453
75 Shahrampour S, Heholt J, Wang A, et al. N-acetyl cysteine administration affects cerebral blood flow as measured by arterial spin labeling MRI in patients with multiple sclerosis. Heliyon. 2021;7(7):e07615. Published 2021 Jul 16. doi:10.1016/j.heliyon.2021.e07615
76 Krysko KM, Bischof A, Nourbakhsh B, et al. A pilot study of oxidative pathways in MS fatigue: randomized trial of N-acetyl cysteine. Ann Clin Transl Neurol. 2021;8(4):811-824. doi:10.1002/acn3.51325
77 Lovera J, Reza T. Stress in multiple sclerosis: review of new developments and future directions. Curr Neurol Neurosci Rep. 2013;13(11):398. doi:10.1007/s11910-013-0398-4
78 Tavee J, Rensel M, Planchon SM, Butler RS, Stone L. Effects of meditation on pain and quality of life in multiple sclerosis and peripheral neuropathy: a pilot study. Int J MS Care. 2011;13(4):163-168. doi:10.7224/1537-2073-13.4.163
79 Levin AB, Hadgkiss EJ, Weiland TJ, et al. Can meditation influence quality of life, depression, and disease outcome in multiple sclerosis? Findings from a large international web-based study. Behav Neurol. 2014;2014:916519. doi:10.1155/2014/916519
80 Cavalera C, Rovaris M, Mendozzi L, et al. Online meditation training for people with multiple sclerosis: A randomized controlled trial. Mult Scler. 2019;25(4):610-617. doi:10.1177/1352458518761187
81 Oz HS, Oz F. A psychoeducation program for stress management and psychosocial problems in multiple sclerosis. Niger J Clin Pract. 2020;23(11):1598-1606. doi:10.4103/njcp.njcp_462_19
82 Anagnostouli M, Babili I, Chrousos G, Artemiadis A, Darviri C. A novel cognitive-behavioral stress management method for multiple sclerosis. A brief report of an observational study. Neurol Res. 2019;41(3):223-226. doi:10.1080/01616412.2018.1548745
83 White, M.P., Alcock, I., Grellier, J. et al. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Sci Rep 9, 7730 (2019). https://doi.org/10.1038/s41598-019-44097-3
84 Caminero A, Bartolomé M. Sleep disturbances in multiple sclerosis. J Neurol Sci. 2011;309(1-2):86-91. doi:10.1016/j.jns.2011.07.015
85 Veauthier C. Sleep disorders in multiple sclerosis. Review. Curr Neurol Neurosci Rep. 2015;15(5):21. doi:10.1007/s11910-015-0546-0
86 Kołtuniuk A, Kazimierska-Zając M, Pogłódek D, Chojdak-Łukasiewicz J. Sleep Disturbances, Degree of Disability and the Quality of Life in Multiple Sclerosis Patients. Int J Environ Res Public Health. 2022;19(6):3271. Published 2022 Mar 10. doi:10.3390/ijerph19063271312

87 Skarlis C, Anagnostouli M. The role of melatonin in Multiple Sclerosis. Neurol Sci. 2020;41(4):769-781. doi:10.1007/s10072-019-04137-2
88 Hsu WY, Anderson A, Rowles W, et al. Effects of melatonin on sleep disturbances in multiple sclerosis: A randomized, controlled pilot study. Mult Scler J Exp Transl Clin. 2021;7(4):20552173211048756. Published 2021 Nov 5. doi:10.1177/20552173211048756
89 Lorenz RA, Auerbach S, Nisbet P, et al. Improving Sleep among Adults with Multiple Sclerosis using Mindfulness plus Sleep Education. West J Nurs Res. 2021;43(3):273-283.
doi:10.1177/0193945920947409
90 Heo JY, Kim K, Fava M, et al. Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison. J Psychiatr Res. 2017;87:61-70. doi:10.1016/j.jpsychires.2016.12.010
91 Interface of Multiple Sclerosis, Depression, Vascular Disease, and Mortality - A Population-Based Matched Cohort Study; Raffaele Palladino, Jeremy Chataway, Azeem Majeed, Ruth Ann Marrie; Neurology Sep 2021, 97 (13) e1322-e1333; DOI: 10.1212/WNL.0000000000012610 https://n.neurology.org/content/97/13/e1322
92 Mincu, R. I., Magda, L. S., Florescu, M., Velcea, A., Mihaila, S., Mihalcea, D., Popescu, B. O., Chiru, A., Tiu, C., Cinteza, M., & Vinereanu, D. (2015). Cardiovascular Dysfunction in Multiple Sclerosis. Maedica, 10(4), 364–370. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394435/
93 Magyari, M., & Sorensen, P. S. (2020). Comorbidity in Multiple Sclerosis. Frontiers in neurology, 11, 851. https://doi.org/10.3389/fneur.2020.00851
94 Aalbers G, McNally RJ, Heeren A, de Wit S, Fried EI. Social media and depression symptoms: A network perspective. J Exp Psychol Gen. 2019;148(8):1454-1462. doi:10.1037/xge0000528
95 de Hoog N, Verboon P. Is the news making us unhappy? The influence of daily news exposure on emotional states. Br J Psychol. 2020;111(2):157-173. doi:10.1111/bjop.12389
96 Sandroff BM, Johnson CL, Motl RW. Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography. Neuroradiology. 2017;59(1):61-67. doi:10.1007/s00234-016-1767-x
97 Halabchi F, Alizadeh Z, Sahraian MA, Abolhasani M. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. BMC Neurol. 2017;17(1):185. Published 2017 Sep 16. doi:10.1186/s12883-017-0960-9
98 Prakash RS, Snook EM, Motl RW, Kramer AF. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res. 2010;1341:41-51. doi:10.1016/j.brainres.2009.06.063
99 Cramer H, Lauche R, Azizi H, Dobos G, Langhorst J. Yoga for multiple sclerosis: a systematic review and meta-analysis. PLoS One. 2014;9(11):e112414. Published 2014 Nov 12. doi:10.1371/journal.pone.0112414
100 Rogers KA, MacDonald M. Therapeutic Yoga: Symptom Management for Multiple Sclerosis. J Altern Complement Med. 2015;21(11):655-659. doi:10.1089/acm.2015.0015
101 Kjølhede T, Vissing K, Dalgas U. Multiple sclerosis and progressive resistance training: a systematic review. Mult Scler. 2012;18(9):1215-1228. doi:10.1177/1352458512437418
102 Patil S, Sen S, Bral M, et al. The Role of Acupuncture in Pain Management. Curr Pain Headache Rep. 2016;20(4):22. doi:10.1007/s11916-016-0552-1
103 Smith CA, Hay PP. Acupuncture for depression. Cochrane Database Syst Rev. 2005;(2):CD004046. Published 2005 Apr 18. doi:10.1002/14651858.CD004046.pub2
104 Bussell J. The effect of acupuncture on working memory and anxiety. J Acupunct Meridian Stud. 2013;6(5):241-246. doi:10.1016/j.jams.2012.12.006
105 Khodaie F, Abbasi N, Kazemi Motlagh AH, Zhao B, Naser Moghadasi A. Acupuncture for multiple sclerosis: A literature review. Mult Scler Relat Disord. 2022;60:103715. doi:10.1016/j.msard.2022.103715
106 Criado MB, Santos MJ, Machado J, Gonçalves AM, Greten HJ. Effects of Acupuncture on Gait of Patients with Multiple Sclerosis. J Altern Complement Med. 2017;23(11):852-857. doi:10.1089/acm.2016.0355
107 Donnellan CP, Shanley J. Comparison of the effect of two types of acupuncture on quality of life in secondary progressive multiple sclerosis: a preliminary single-blind randomized controlled trial. Clin Rehabil. 2008;22(3):195-205.
doi:10.1177/0269215507082738
108 Ding Y, Shi X. Zhongguo Zhen Jiu. 2013;33(9):793-795
109 Wang C, Chen Z, Wang L, et al. Zhongguo Zhen Jiu. 2017;37(6):576-580. doi:10.13703/j.0255-2930.2017.06.002
110 Kim PS, Fishman MA. Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review. Curr Pain Headache Rep. 2020;24(10):64. Published 2020 Aug 26. doi:10.1007/s11916-020-00898-0
111 Toljan K, Vrooman B. Low-Dose Naltrexone (LDN)-Review of Therapeutic Utilization. Med Sci (Basel). 2018;6(4):82. Published 2018 Sep 21. doi:10.3390/medsci6040082
112 Patten DK, Schultz BG, Berlau DJ. The Safety and Efficacy of Low-Dose Naltrexone in the Management of Chronic Pain and Inflammation in Multiple Sclerosis, Fibromyalgia, Crohn’s Disease, and Other Chronic Pain Disorders. Pharmacotherapy. 2018;38(3):382-389. doi:10.1002/phar.2086
113 Trofimovitch D, Baumrucker SJ. Pharmacology Update: Low-Dose Naltrexone as a Possible Nonopioid Modality for Some Chronic, Nonmalignant Pain Syndromes. Am J Hosp Palliat Care. 2019;36(10):907-912. doi:10.1177/1049909119838974
114 Gironi M, Martinelli-Boneschi F, Sacerdote P, et al. A pilot trial of low-dose naltrexone in primary progressive multiple sclerosis. Mult Scler. 2008;14(8):1076-1083. doi:10.1177/1352458508095828
115 Younger J, Noor N, McCue R, Mackey S. Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. Arthritis Rheum. 2013;65(2):529-538. doi:10.1002/art.37734
116 Winkelmann, A., Loebermann, M., Reisinger, E. et al. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12, 217–233 (2016). https://doi.org/10.1038/nrneurol.2016.21


Ch. 4: Psoriasis and Eczema Protocol

1 https://www.mayoclinic.org/
2 Roesner, L. M., & Werfel, T. (2019). Autoimmunity (or Not) in Atopic Dermatitis. Frontiers in immunology, 10, 2128. https://doi.org/10.3389/fimmu.2019.02128 https://pubmed.ncbi.nlm.nih.gov/31552053
3 Roesner, L. M., & Werfel, T. (2019). Autoimmunity (or Not) in Atopic Dermatitis. Frontiers in immunology, 10, 2128. https://doi.org/10.3389/fimmu.2019.02128 https://pubmed.ncbi.nlm.nih.gov/31552053/
4 https://www.manhattanmedicalresearch.com
5 Papagrigoraki, A., Maurelli, M., Del Giglio, M., Gisondi, P., & Girolomoni, G. (2017). Advanced Glycation End Products in the Pathogenesis of Psoriasis. International journal of molecular sciences, 18(11), 2471. https://doi.org/10.3390/ijms18112471 https://pubmed.ncbi.nlm.nih.gov/29156622/
6 Zivkovic, A. M., Telis, N., German, J. B., & Hammock, B. D. (2011). Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. California agriculture, 65(3), 106–111. https://doi.org/10.3733/ca.v065n03p106 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030645/
7 Wong, J. Y., Abdulla, M. A., Raman, J., Phan, C. W., Kuppusamy, U. R., Golbabapour, S., & Sabaratnam, V. (2013). Gastroprotective Effects of Lion’s Mane Mushroom Hericium erinaceus (Bull.:Fr.) Pers. (Aphyllophoromycetideae) Extract against Ethanol-Induced Ulcer in Rats. Evidence-based complementary and alternative medicine: eCAM, 2013,
492976. https://doi.org/10.1155/2013/492976
8 Wachtel-Galor S, Yuen J, Buswell JA, et al. Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 9. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92757/
9 Peterson, C. T., Sharma, V., Uchitel, S., Denniston, K., Chopra, D., Mills, P. J., & Peterson, S. N. (2018). Prebiotic Potential of Herbal Medicines Used in Digestive Health and Disease. Journal of alternative and complementary medicine (New York, N.Y.), 24(7), 656–665.https://doi.org/10.1089/acm.2017.0422
10 Fink, C., Schmidt, M., & Kraft, K. (2018). Complementary medicine research, 25(5),299–305. https://doi.org/10.1159/000489560
11 Najafian, Y., Hamedi, S. S., Farshchi, M. K., & Feyzabadi, Z. (2018). Plantago major in Traditional Persian Medicine and modern phytotherapy: a narrative review. Electronic physician, 10(2), 6390–6399. https://doi.org/10.19082/6390
12 Benson, K. F., Stamets, P., Davis, R., Nally, R., Taylor, A., Slater, S., & Jensen, G. S. (2019). The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. BMC complementary and alternative medicine, 19(1), 342. https://doi.org/10.1186/s12906-019-2681-7
13 Fahey, J. W., Stephenson, K. K., & Wallace, A. J. (2015). Dietary amelioration of Helicobacter infection. Nutrition research (New York, N.Y.), 35(6), 461–473. https://doi.org/10.1016/j.nutres.2015.03.001
14 Mravčáková, D., Komáromyová, M., Babják, M., Urda Dolinská, M., Königová, A., Petrič, D., Čobanová, K., Ślusarczyk, S., Cieslak, A., Várady, M., & Váradyová, Z. (2020). Anthelmintic Activity of Wormwood (Artemisia absinthium L.) and Mallow (Malva sylvestris L.) against Haemonchuscontortus in Sheep. Animals: an open access journal from MDPI, 10(2), 219. https://doi.org/10.3390/ani10020219
15 Di, T. T., Ruan, Z. T., Zhao, J. X., Wang, Y., Liu, X., Wang, Y., & Li, P. (2016). Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway. International immunopharmacology, 32, 32–38. https://doi.org/10.1016/j.intimp.2015.12.035
16 Guggenheim, A. G., Wright, K. M., & Zwickey, H. L. (2014). Immune Modulation From Five Major Mushrooms: Application to Integrative Oncology. Integrative medicine (Encinitas, Calif.), 13(1), 32–44
17 Ziauddin, M., Phansalkar, N., Patki, P., Diwanay, S., & Patwardhan, B. (1996). Studies on the immunomodulatory effects of Ashwagandha. Journal of ethnopharmacology, 50(2), 69–76. https://doi.org/10.1016/0378-8741(95)01318-0
18 Park, C. M., Cho, C. W., & Song, Y. S. (2014). TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells. Food and chemical toxicology: an international journal published for the
British Industrial Biological Research Association, 66, 56–64. https://doi.org/10.1016/j.fct.2014.01.019
19 Roschek, B., Jr, Fink, R. C., McMichael, M., & Alberte, R. S. (2009). Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phytotherapy research: PTR, 23(7), 920–926. https://doi.org/10.1002/ptr.2763
20 Chan, YS., Cheng, LN., Wu, JH. et al. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacol 19, 245–254 (2011). https://doi.org/10.1007/s10787-010-0062-4
21 Ilina T, Kashpur N, Granica S, Bazylko A, Shinkovenko I, Kovalyova A, Goryacha O, Koshovyi O. Phytochemical Profiles and In Vitro Immunomodulatory Activity of Ethanolic Extracts from Galium aparine L. Plants. 2019; 8(12):541. https://doi.
org/10.3390/plants8120541 313
22 Jurenka J. S. (2009). Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alternative medicine review: a journal of clinical therapeutic, 14(2), 141–153
23 Mashhadi, N. S., Ghiasvand, R., Askari, G., Hariri, M., Darvishi, L., & Mofid, M. R. (2013). Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. International journal of preventive medicine, 4(Suppl1), S36–S42
24 Olajide O. A. (2009). Inhibitory effects of St. John’s Wort on inflammation: ignored potential of a popular herb. Journal of dietary supplements, 6(1), 28–32. https://doi.org/10.1080/19390210802687247
25 Pommier, P. (n.d.). Phase III Randomized Trial of Calendula Officinalis Compared With Trolamine for the Prevention of Acute Dermatitis During Irradiation for Breast Cancer | Journal of Clinical Oncology. Phase III Randomized Trial of Calendula Officinalis Compared With Trolamine for the Prevention of Acute Dermatitis During Irradiation for Breast Cancer | Journal of Clinical Oncology; ascopubs.org. Retrieved May 9, 2022, from https://ascopubs.org/doi/10.1200/JCO.2004.07.063
26 Chandra, S., & Rawat, D. S. (2015). Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integrative medicine research, 4(3), 123–131. https://doi.org/10.1016/j.imr.2015.06.004
27 Reuter, J., Jocher, A., Stump, J., Grossjohann, B., Franke, G., & Schempp, C. M. (2008). Investigation of the anti-inflammatory potential of Aloe vera gel (97.5%) in the ultraviolet erythema test. Skin pharmacology and physiology, 21(2), 106–110. https://doi.org/10.1159/000114871
28 Cerio, R., Dohil, M., Jeanine, D., Magina, S., Mahé, E., & Stratigos, A. J. (2010). Mechanism of action and clinical benefits of colloidal oatmeal for dermatologic practice. Journal of drugs in dermatology: JDD, 9(9), 1116–1120
29 Miceli A, Schmieder GJ. Palmoplantar Psoriasis. [Updated 2021 Aug 22]. In: Stat-Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK448142/
30 Barrea, L., Savanelli, M. C., Di Somma, C., Napolitano, M., Megna, M., Colao, A., & Savastano, S. (2017). Vitamin D and its role in psoriasis: An overview of the dermatologist and nutritionist. Reviews in endocrine & metabolic disorders, 18(2), 195–205. https://doi.org/10.1007/s11154-017-9411-6
31 Lin, X., Meng, X., & Song, Z. (2019). Homocysteine and psoriasis. Bioscience reports, 39(11), BSR20190867. https://doi.org/10.1042/BSR20190867
32 Upala, S., Yong, W. C., Theparee, T., & Sanguankeo, A. (2017). Effect of omega-3 fatty acids on disease severity in patients with psoriasis: A systematic review. International journal of rheumatic diseases, 20(4), 442–450. https://doi.org/10.1111/1756-
185X.13051
33 Zhu, X., Sang, L., Wu, D., Rong, J., & Jiang, L. (2018). Effectiveness and safety of glucosamine and chondroitin for the treatment of osteoarthritis: a meta-analysis of randomized controlled trials. Journal of orthopaedic surgery and research, 13(1), 170. https://doi.org/10.1186/s13018-018-0871-5
34 Butawan, M., Benjamin, R. L., & Bloomer, R. J. (2017). Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients, 9(3), 290. https://doi.org/10.3390/nu9030290
35 Zhang, P., & Wu, M. X. (2018). A clinical review of phototherapy for psoriasis. Lasers in medical science, 33(1), 173–180. https://doi.org/10.1007/s10103-017-2360-1
36 Jensen, P., & Skov, L. (2016). Psoriasis and Obesity. Dermatology (Basel, Switzerland), 232(6), 633–639. https://doi.org/10.1159/000455840
37 Psoriasis.org. 2022. Treatment and Care. [online] Available at: <https://www.psoriasis.org/treatment-and-care/>[Accessed 9 May 2022


Ch. 5: Rheumatoid Arthritis Protocol

1 Doğan SC, Hizmetli S, Hayta E, Kaptanoğlu E, Erselcan T, Güler E. Sarcopenia in women with rheumatoid arthritis. Eur J Rheumatol. 2015 Jun;2(2):57-61. doi: 10.5152/eurjrheum. 2015.0038. Epub 2015 Mar 31. PMID: 27708927; PMCID: PMC5047263
2 Chen YJ, Chang YT, Wang CB, Wu CY. The risk of cancer in patients with rheumatoid arthritis: a nationwide cohort study in Taiwan. Arthritis Rheum. 2011;63:352–358
3 Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018 Apr 27;6:15. doi: 10.1038/s41413-018-0016-9. PMID: 29736302; PMCID: PMC5920070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920070/
4 Dube, S. R., Fairweather, D., Pearson, W. S., Felitti, V. J., Anda, R. F., & Croft, J. B. (2009). Cumulative childhood stress and autoimmune diseases in adults. Psychosomatic medicine, 71(2), 243–250. https://doi.org/10.1097/PSY.0b013e3181907888
5 Vadell AKE, Bärebring L, Hulander E, Gjertsson I, Lindqvist HM, Winkvist A. Anti-inflammatory Diet In Rheumatoid Arthritis (ADIRA)-a randomized, controlled crossover trial indicating effects on disease activity. Am J Clin Nutr. 2020 Jun 1;111(6):1203-1213. doi: 10.1093/ajcn/nqaa019. PMID: 32055820; PMCID: PMC7266686
6 Müller, H., de Toledo, F. W., & Resch, K. L. (2001). Fasting followed by vegetarian diet in patients with rheumatoid arthritis: a systematic review. Scandinavian journal of rheumatology, 30(1), 1–10. https://doi.org/10.1080/030097401750065256
7 Kjeldsen-Kragh, J., Haugen, M., Borchgrevink, C. F., Laerum, E., Eek, M., Mowinkel, P., Hovi, K., & Førre, O. (1991). Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. Lancet (London, England), 338(8772), 899–902. https://doi.org/10.1016/0140-6736(91)91770-u
8 Dourado, E., Ferro, M., Sousa Guerreiro, C., & Fonseca, J. E. (2020). Diet as a Modulator of Intestinal Microbiota in Rheumatoid Arthritis. Nutrients, 12(11), 3504. https://doi.org/10.3390/nu12113504
9 Drago L. (2019). Prevotella Copri and Microbiota in Rheumatoid Arthritis: Fully Convincing Evidence?. Journal of clinical medicine, 8(11), 1837. https://doi.org/10.3390/jcm8111837
10 Fujinami, R. S., von Herrath, M. G., Christen, U., & Whitton, J. L. (2006). Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clinical microbiology reviews, 19(1), 80–94. https://doi.org/10.1128/CMR.19.1.80-94.2006
11 Taneja V. (2014). Arthritis susceptibility and the gut microbiome. FEBS letters, 588(22), 4244–4249. https://doi.org/10.1016/j.febslet.2014.05.034
12 Vaahtovuo, J., Munukka, E., Korkeamäki, M., Luukkainen, R., & Toivanen, P. (2008). Fecal microbiota in early rheumatoid arthritis. The Journal of rheumatology, 35(8), 1500–1505.
13 Gérard, H. C., Wang, Z., Wang, G. F., El-Gabalawy, H., Goldbach-Mansky, R., Li, Y., Majeed, W., Zhang, H., Ngai, N., Hudson, A. P., & Schumacher, H. R. (2001). Chromosomal DNA from a variety of bacterial species is present in synovial tissue from patients with various forms of arthritis. Arthritis and rheumatism, 44(7), 1689–1697. https://doi.
org/10.1002/1529-0131(200107)44:7<1689: AID-ART293>3.0.CO;2-K
14 Azuma, K., Osaki, T., Wakuda, T., Tsuka, T., Imagawa, T., Okamoto, Y., & Minami, S. (2012). Suppressive effects of N-acetyl-D-glucosamine on rheumatoid arthritis mouse models. Inflammation, 35(4), 1462–1465. https://doi.org/10.1007/s10753-012-9459-0
15 Richter, J., Capková, K., Hříbalová, V., Vannucci, L., Danyi, I., Malý, M., & Fišerová, A. (2014). Collagen-induced arthritis: severity and immune response attenuation using multivalent N-acetyl glucosamine. Clinical and experimental immunology, 177(1), 121–133. https://doi.org/10.1111/cei.12313
16 Shmagel, A., Demmer, R., Knights, D., Butler, M., Langsetmo, L., Lane, N. E., & Ensrud, K. (2019). The Effects of Glucosamine and Chondroitin Sulfate on Gut Microbial Composition: A Systematic Review of Evidence from Animal and Human Studies. Nutrients, 11(2), 294. https://doi.org/10.3390/nu11020294
17 Arafa, N. M., Hamuda, H. M., Melek, S. T., & Darwish, S. K. (2013). The effectiveness of Echinacea extract or composite glucosamine, chondroitin and methyl sulfonyl methane supplements on acute and chronic rheumatoid arthritis rat model. Toxicology and industrial health, 29(2), 187–201. https://doi.org/10.1177/0748233711428643
18 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015): 1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.gov/26853960/
19 Siqueira, U. S., Orsini Valente, L. G., de Mello, M. T., Szejnfeld, V. L., & Pinheiro, M.M. (2017). Effectiveness of Aquatic Exercises in Women With Rheumatoid Arthritis: A Randomized, Controlled, 16-Week Intervention-The HydRA Trial. American journal of physical medicine & rehabilitation, 96(3), 167–175. https://doi.org/10.1097/PHM.0000000000000564
20 Baxter, S. V., Hale, L. A., Stebbings, S., Gray, A. R., Smith, C. M., & Treharne, G. J. (2016). Walking is a Feasible Physical Activity for People with Rheumatoid Arthritis: A Feasibility Randomized Controlled Trial. Musculoskeletal care, 14(1), 47–56. https://doi.org/10.1002/msc.1112
21 Cooney, J. K., Law, R. J., Matschke, V., Lemmey, A. B., Moore, J. P., Ahmad, Y., Jones, J. G., Maddison, P., & Thom, J. M. (2011). Benefits of exercise in rheumatoid arthritis. Journal of aging research, 2011, 681640. https://doi.org/10.4061/2011/681640
22 Fentem P. H. (1994). ABC of sports medicine. Benefits of exercise in health and disease. BMJ (Clinical research ed.), 308(6939), 1291–1295. https://doi.org/10.1136/bmj.308.6939.1291
23 Han, A., Robinson, V., Judd, M., Taixiang, W., Wells, G., & Tugwell, P. (2004). Tai chi for treating rheumatoid arthritis. The Cochrane database of systematic reviews, (3), CD004849. https://doi.org/10.1002/14651858.CD004849
24 Mori, K., Ouchi, K., & Hirasawa, N. (2015). The Anti-Inflammatory Effects of Lion’s Mane Culinary-Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes) in a Coculture System of 3T3-L1 Adipocytes and RAW264 Macrophages. International journal of medicinal mushrooms, 17(7), 609–618. https://doi.org/10.1615/intjmedmushrooms.
v17.i7.10
25 Sheena, N., Ajith, T.A., & Janardhanan, K.K. (2003). Anti-inflammatory and Antinociceptive Activities of Ganoderma lucidum Occurring in South India, Pharmaceutical Biology, 41:4, 301-304, DOI: 10.1076/phbi.41.4.301.15677
26 Li, E. K., Tam, L. S., Wong, C. K., Li, W. C., Lam, C. W., Wachtel-Galor, S., Benzie, I. F., Bao, Y. X., Leung, P. C., & Tomlinson, B. (2007). Safety and efficacy of Ganoderma lucidum (lingzhi) and San Miao San supplementation in patients with rheumatoid arthritis: a double-blind, randomized, placebo-controlled pilot trial. Arthritis and rheumatism,
57(7), 1143–1150. https://doi.org/10.1002/art.22994
27 Bhardwaj, N., Katyal, P., & Sharma, A. K. (2014). Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent patents on inflammation & allergy drug discovery, 8(2), 104–117. https://doi.org/10.2174/1872213x08666140619110657
28 Saleh, M. H., Rashedi, I., & Keating, A. (2017). Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Frontiers in immunology, 8, 1087. https://doi.org/10.3389/fimmu.2017.01087
29 Yu, Z. T., Liu, B., Mukherjee, P., & Newburg, D. S. (2013). Trametes versicolor extract modifies human fecal microbiota composition in vitro. Plant foods for human nutrition (Dordrecht, Netherlands), 68(2), 107–112. https://doi.org/10.1007/s11130-013-0342-4
30 Noh, E. M., Kim, J. S., Hur, H., Park, B. H., Song, E. K., Han, M. K., Kwon, K. B., Yoo, W. H., Shim, I. K., Lee, S. J., Youn, H. J., & Lee, Y. R. (2009). Cordycepin inhibits IL-1beta-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology (Oxford, England), 48(1), 45–48. https://doi.org/10.1093/rheumatology/ken417314 31 Guo, P., Kai, Q., Gao, J., Lian, Z. Q., Wu, C. M., Wu, C. A., & Zhu, H. B. (2010). Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of pharmacological sciences, 113(4), 395–403. https://doi.org/10.1254/jphs.10041fp
32 Chandra, L., Alexander, H., Traoré, D., Lucas, E. A., Clarke, S. L., Smith, B. J., Lightfoot, S. A., & Kuvibidila, S. (2011). White button and shiitake mushrooms reduce the incidence and severity of collagen-induced arthritis in dilute brown non-agouti mice. The Journal of nutrition, 141(1), 131–136. https://doi.org/10.3945/jn.110.127134
33 Kim, G. Y., Kim, S. H., Hwang, S. Y., Kim, H. Y., Park, Y. M., Park, S. K., Lee, M. K., Lee, S.H., Lee, T. H., & Lee, J. D. (2003). Oral administration of proteoglycan isolated from Phellinus linteus in the prevention and treatment of collagen-induced arthritis in mice. Biological & pharmaceutical bulletin, 26(6), 823–831. https://doi.org/10.1248/bpb.26.823
34 Semalty, M., Adhikari, L., Semwal, D., Chauhan, A., Mishra, A., Kotiyal, R., & Semalty, A. (2017). A comprehensive review on phytochemistry and pharmacological effects of stinging nettle (Urtica dioica). Current Traditional Medicine, 3(3), 156-167
35 Abd-Nikfarjam, B., Abbasi, M., Memarzadeh, M., Farzam, S. A., Jamshidian, A., & Dolati-Somarin, A. (2022). Therapeutic efficacy of Urtica dioica and evening primrose in patients with rheumatoid arthritis: A randomized double-blind, placebo-controlled clinical trial. Journal of Herbal Medicine, 32, 100556. https://www.sciencedirect.com/science/article/abs/pii/S2210803322000240
36 Johnson TA, Sohn J, Inman WD, Bjeldanes LF, Rayburn K. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders.
37 Kessenbrock, K., Fröhlich, L., Sixt, M., Lämmermann, T., Pfister, H., Bateman, A., Belaaouaj, A., Ring, J., Ollert, M., Fässler, R., & Jenne, D. E. (2008). Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. The Journal of clinical investigation, 118(7), 2438–2447. https://doi.org/10.1172/JCI34694
38 Jacquet, A., Girodet, P. O., Pariente, A., Forest, K., Mallet, L., & Moore, N. (2009). Phytalgic, a food supplement, vs placebo in patients with osteoarthritis of the knee or hip: a randomised double-blind placebo-controlled clinical trial. Arthritis research & therapy, 11(6), R192. https://doi.org/10.1186/ar2891 https://pubmed.ncbi.nlm.nih.gov/20015358/
39 Goldbach-Mansky, R., Wilson, M., Fleischmann, R., Olsen, N., Silverfield, J., Kempf, P., Kivitz, A., Sherrer, Y., Pucino, F., Csako, G., Costello, R., Pham, T. H., Snyder, C., van der Heijde, D., Tao, X., Wesley, R., & Lipsky, P. E. (2009). Comparison of Tripterygium wilfordii Hook F versus sulfasalazine in the treatment of rheumatoid arthritis: a randomized trial.
Annals of internal medicine, 151(4), 229–W51. https://doi.org/10.7326/0003-4819-151-4-200908180-00005
40 Huang, Q. C., Wang, M. J., Chen, X. M., Yu, W. L., Chu, Y. L., He, X. H., & Huang, R. Y. (2016). Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis? Oncotarget, 7(2), 1193–1202. https://doi.org/10.18632/oncotarget.6200
41 Feng, Y., Mei, L., Wang, M., Huang, Q., & Huang, R. (2021). Anti-inflammatory and Pro-apoptotic Effects of 18beta-Glycyrrhetinic Acid In Vitro and In Vivo Models of Rheumatoid Arthritis. Frontiers in pharmacology, 12, 681525. https://doi.org/10.3389/fphar.2021.681525
42 Sharma, M. L., Bani, S., & Singh, G. B. (1989). Anti-arthritic activity of boswellic acids in bovine serum albumin (BSA)-induced arthritis. International journal of immunopharmacology, 11(6), 647–652. https://doi.org/10.1016/0192-0561(89)90150-1
43 Sharma, M. L., Bani, S., & Singh, G. B. (1989). Anti-arthritic activity of boswellic acids in bovine serum albumin (BSA)-induced arthritis. International journal of immunopharmacology, 11(6), 647–652. https://doi.org/10.1016/0192-0561(89)90150-1
44 Siddiqui M. Z. (2011). Boswellia serrata, a potential antiinflammatory agent: an overview. Indian journal of pharmaceutical sciences, 73(3), 255–261. https://doi.org/10.4103/0250-474X.93507
45 Sotebeer, M., & White, N. D. (2022). Potential Benefits of Curcumin in Rheumatoid Arthritis. American Journal of Lifestyle Medicine, 15598276221116063
46 Daily, J. W., Yang, M., & Park, S. (2016). Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. Journal of medicinal food, 19(8), 717-729. https://www.liebertpub.com/doi/full/10.1089/jmf.2016.3705
47 Al-Nahain, A., Jahan, R., & Rahmatullah, M. (2014). Zingiber officinale: A Potential Plant against Rheumatoid Arthritis. Arthritis, 2014, 159089. https://doi.org/10.1155/2014/159089
48 Funk, J. L., Frye, J. B., Oyarzo, J. N., & Timmermann, B. N. (2009). Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental rheumatoid arthritis. Journal of natural products, 72(3), 403–407. https://doi.org/10.1021/np8006183
49 Srivastava, K. C., & Mustafa, T. (1992). Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Medical hypotheses, 39(4), 342–348. https://doi.org/10.1016/0306-9877(92)90059-l
50 Al-Nahain A, Jahan R, Rahmatullah M. Zingiber officinale: A Potential Plant against Rheumatoid Arthritis. Arthritis. 2014;2014:159089. doi: 10.1155/2014/159089. Epub 2014 May 27. PMID: 24982806; PMCID: PMC4058601
51 Mur, E., Hartig, F., Eibl, G., & Schirmer, M. (2002). Randomized double blind trial of an extract from the pentacyclic alkaloid-chemotype of uncaria tomentosa for the treatment of rheumatoid arthritis. The Journal of rheumatology, 29(4), 678–681.
52 Kim, E. H., Shim, B., Kang, S., Jeong, G., Lee, J. S., Yu, Y. B., & Chun, M. (2009). Anti-inflammatory effects of Scutellaria baicalensis extract via suppression of immune modulators and MAP kinase signaling molecules. Journal of ethnopharmacology, 126(2), 320–331. https://doi.org/10.1016/j.jep.2009.08.027
53 Yang, X., Yang, J., & Zou, H. (2013). Baicalin inhibits IL-17-mediated joint inflammation in murine adjuvant-induced arthritis. Clinical & developmental immunology, 2013, 268065. https://doi.org/10.1155/2013/268065
54 Kostoglou-Athanassiou, I., Athanassiou, P., Lyraki, A., Raftakis, I., & Antoniadis, C. (2012). Vitamin D and rheumatoid arthritis. Therapeutic advances in endocrinology and metabolism, 3(6), 181–187. https://doi.org/10.1177/2042018812471070
55 Javadi, F., Ahmadzadeh, A., Eghtesadi, S., Aryaeian, N., Zabihiyeganeh, M., Rahimi Foroushani, A., & Jazayeri, S. (2017). The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. Journal of the American College of Nutrition, 36(1), 9–15. https://doi.org/10.1080/07315724.2016.1140093
56 Kostoglou-Athanassiou, I., Athanassiou, L., & Athanassiou, P. (2020). The Effect of Omega-3 Fatty Acids on Rheumatoid Arthritis. Mediterranean journal of rheumatology, 31(2), 190–194. https://doi.org/10.31138/mjr.31.2.190
57 Rajaei, E., Mowla, K., Ghorbani, A., Bahadoram, S., Bahadoram, M., & Dargahi-Malamir, M. (2015). The Effect of Omega-3 Fatty Acids in Patients With Active Rheumatoid Arthritis Receiving DMARDs Therapy: Double-Blind Randomized Controlled Trial. Global journal of health science, 8(7), 18–25. https://doi.org/10.5539/gjhs.v8n7p18
58 Leventhal, L. J., Boyce, E. G., & Zurier, R. B. (1993). Treatment of rheumatoid arthritis with gammalinolenic acid. Annals of internal medicine, 119(9), 867–873. https://doi.org/10.7326/0003-4819-119-9-199311010-00001
59 Salehi, B., Rescigno, A., Dettori, T., Calina, D., Docea, A. O., Singh, L., Cebeci, F., Özçelik, B., Bhia, M., Dowlati Beirami, A., Sharifi-Rad, J., Sharopov, F., Cho, W. C., & Martins, N. (2020). Avocado-Soybean Unsaponifiables: A Panoply of Potentialities to Be Exploited. Biomolecules, 10(1), 130. https://doi.org/10.3390/biom10010130
60 Cinelli, M., Guiducci, S., Del Rosso, A., Pignone, A., Del Rosso, M., Fibbi, G., Serratì, S., Gabrielli, A., Giacomelli, R., Piccardi, N., & Matucci Cerinic, M. (2006). Piascledine modulates the production of VEGF and TIMP-1 and reduces the invasiveness of rheumatoid arthritis synoviocytes. Scandinavian journal of rheumatology, 35(5), 346–350. https://doi.org/10.1080/03009740600709865
61 Butawan, M., Benjamin, R. L., & Bloomer, R. J. (2017). Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients, 9(3), 290. https://doi.org/10.3390/nu9030290
62 Dube, S. R., Fairweather, D., Pearson, W. S., Felitti, V. J., Anda, R. F., & Croft, J. B. (2009). Cumulative childhood stress and autoimmune diseases in adults. Psychosomatic medicine, 71(2), 243–250. https://doi.org/10.1097/PSY.0b013e3181907888
63 Hassett, A. L., & Clauw, D. J. (2010). The role of stress in rheumatic diseases. Arthritis research & therapy, 12(3), 123. https://doi.org/10.1186/ar3024
64 Grabovac, I., Haider, S., Berner, C., Lamprecht, T., Fenzl, K. H., Erlacher, L., Quittan, M., & Dorner, T. E. (2018). Sleep Quality in Patients with Rheumatoid Arthritis and Associations with Pain, Disability, Disease Duration, and Activity. Journal of clinical medicine, 7(10), 336. https://doi.org/10.3390/jcm7100336


Ch. 6: Heart Health Protocol

1 Centers for Disease Control and Prevention. (2022, July 15). Heart disease facts. Centers for Disease Control and Prevention. Retrieved July 18, 2022, from https://www.cdc.gov/heartdisease/facts.htm
2 Semeco, A. (2017, October 12). 9 benefits of coenzyme Q10 (coq10). Healthline. Retrieved July 28, 2022, from https://www.healthline.com/nutrition/coenzyme-q10#TOC_TITLE_HDR_1
3 World Health Organization. (n.d.). Cardiovascular diseases: Avoiding heart attacks and strokes. World Health Organization. Retrieved August 3, 2022, from https://www.who.int/news-room/questions-and-answers/item/cardiovascular-diseases-avoiding-heart-attacks-and-strokes
4 Guo, P., Kai, Q., Gao, J., Lian, Z. Q., Wu, C. M., Wu, C. A., & Zhu, H. B. (2010). Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of pharmacological sciences, 113(4), 395–403. https://doi.org/10.1254/jphs.10041fp https://pubmed.ncbi.nlm.nih.gov/20724804/
5 Heshmat‐Ghahdarijani, K., Mashayekhiasl, N., Amerizadeh, A., Teimouri Jervekani, Z.,& Sadeghi, M. (2020). Effect of fenugreek consumption on serum lipid profile: A systematic review and meta‐analysis. Phytotherapy Research, 34(9), 2230–2245. https://doi.org/10.1002/ptr.6690
6 Fenugreek uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.). Retrieved July 25, 2022, from https://www.drugs.com/npp/fenugreek.html
7 Wu, Y.-Z., Li, S.-Q., Zu, X.-G., Du, J., & Wang, F.-F. (2008). Ginkgo biloba extract improves coronary artery circulation in patients with coronary artery disease: Contribution of plasma nitric oxide and endothelin-1. Phytotherapy Research, 22(6), 734–739. https://doi.org/10.1002/ptr.2335
8 Isah, T. (2015). Rethinking ginkgo biloba L.: Medicinal uses and conservation. Pharmacognosy Reviews, 9(18), 140. https://doi.org/10.4103/0973-7847.162137
9 Diamond, B. J., & Bailey, M. R. (2013). Ginkgo biloba. Psychiatric Clinics of North America, 36(1), 73–83. https://doi.org/10.1016/j.psc.2012.12.006
10 Hawthorn. Mount Sinai Health System. (n.d.). Retrieved July 20, 2022, from https://www.mountsinai.org/health-library/herb/hawthorn
11 Hawthorn - Tassell, M. C., Kingston, R., Gilroy, D., Lehane, M., & Furey, A. (2010). Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacognosy reviews, 4(7), 32–41. https://doi.org/10.4103/0973-7847.65324. https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC3249900/
12 Hawthorn. Mount Sinai Health System. (n.d.). Retrieved July 20, 2022, from https://www.mountsinai.org/health-library/herb/hawthorn
13 Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I., & Heinrich, M. (2014). Hibiscus Sabdariffa L. – a phytochemical and pharmacological review. 315 Food Chemistry, 165, 424–443. https://doi.org/10.1016/j.foodchem.2014.05.002
14 Najafpour Boushehri, S., Karimbeiki, R., Ghasempour, S., Ghalishourani, S. S., Pourmasoumi, M., Hadi, A., Mbabazi, M., pour, Z. K., Assarroudi, M., Mahmoodi, M., Khosravi, A., Mansour‐Ghanaei, F., & Joukar, F. (2020). The efficacy of sour tea (hibiscus sabdariffa L.) on selected Cardiovascular disease risk factors: A systematic review and meta‐analysis
of randomized clinical trials. Phytotherapy Research, 34(2), 329–339. https://doi.org/10.1002/ptr.6541
15 Cohen MM. Tulsi - Ocimum sanctum: A herb for all reasons. J Ayurveda Integr Med. 2014 Oct-Dec;5(4):251-9. doi: 10.4103/0975-9476.146554. PMID: 25624701; PMCID: PMC4296439
16 Azhar I, Aftab K, Usmanghani K. Naturally occurring calcium channel blockers. Hamdard Medicus. 1995;38:5–16
17 Tabassum N, Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacogn Rev. 2011 Jan;5(9):30-40. doi: 10.4103/0973-7847.79097. PMID: 22096316; PMCID: PMC3210006
18 Wu, J.-Y., Siu, K.-C., & Geng, P. (2021). Bioactive ingredients and medicinal values of grifola frondosa (maitake). Foods, 10(1), 95. https://doi.org/10.3390/foods10010095
19 ADACHI, K. Y. O. K. O., NANBA, H. I. R. O. A. K. I., OTSUKA, M. A. S. A. M. I. C. H. I., & KURODA, H. I. S. A. T. O. R. A. (1988). Blood pressure-lowering activity present in the fruit body of grifola frondosa (Maitake). i. Chemical and Pharmaceutical Bulletin, 36(3), 1000–1006. https://doi.org/10.1248/cpb.36.1000
20 Indication-specific dosing for grifola frondosa (maitake), frequency-based adverse effects, comprehensive interactions, contraindications, pregnancy & lactation schedules, and cost information. (2019, September 28). Retrieved July 18, 2022, from https://reference.medscape.com/drug/grifola-frondosa-maitake-344489
21 Suveren, E., Baxter, G. F., Iskit, A. B., & Turker, A. U. (2017). Cardioprotective effects of Viscum album L. subsp. album (European Misletoe) leaf extracts in myocardial ischemia and reperfusion. Journal of Ethnopharmacology, 209, 203–209. https://doi.org/10.1016/j.jep.2017.07.010
22 Mistletoe uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.). Retrieved July 20, 2022, from https://www.drugs.com/npp/mistletoe.html
23 Olive leaf. Memorial Sloan Kettering Cancer Center. (n.d.). Retrieved July 18, 2022, from https://www.mskcc.org/cancer-care/integrative-medicine/herbs/olive-leaf
24 Brennan, D. (2020, November 6). Olive leaf extract: Health benefits, uses, dosage, and more. WebMD. Retrieved July 20, 2022, from https://www.webmd.com/diet/health-benefits-olive-leaf-extract#1
25 Brennan, D. (2020, November 6). Olive leaf extract: Health benefits, uses, dosage, and more. WebMD. Retrieved July 20, 2022, from https://www.webmd.com/diet/health-benefits-olive-leaf-extract#1
26 Martínez-González, M. A., Gea, A., & Ruiz-Canela, M. (2019). The Mediterranean diet and Cardiovascular Health. Circulation Research, 124(5), 779–798. https://doi.org/10.1161/circresaha.118.313348
27 Martínez-González, M. A., Salas-Salvadó, J., Estruch, R., Corella, D., Fitó, M., & Ros, E. (2015). Benefits of the Mediterranean diet: Insights from the predimed study. Progress in Cardiovascular Diseases, 58(1), 50–60. https://doi.org/10.1016/j.pcad.2015.04.003
28 Mayo Foundation for Medical Education and Research. (2021, June 25). How to make the Dash Diet Work For you. Mayo Clinic. Retrieved July 25, 2022, from https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/dash-diet/art-20048456
29 Kahn, J. K. (2016). The Whole Heart Solution: Halt heart disease now with the best alternative and Traditional Medicine. The Reader’s Digest Association, Inc.
30 Just how healthy are pomegranates? www.heart.org. (2022, January 3). Retrieved August 7, 2022, from https://www.heart.org/en/news/2021/09/09/just-how-healthyare-pomegranates
31 Asgary, S., Javanmard, S. H., & Zarfeshany, A. (2014). Potent health effects of pomegranate. Advanced Biomedical Research, 3(1), 100. https://doi.org/10.4103/2277-9175.129371
32 Sahebkar, A., Ferri, C., Giorgini, P., Bo, S., Nachtigal, P., & Grassi, D. (2017). Effects of pomegranate juice on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 115, 149–161. https://doi.org/10.1016/j.phrs.2016.11.018
33 Tian, D., & Meng, J. (2019). Exercise for prevention and relief of cardiovascular disease: Prognoses, mechanisms, and approaches. Oxidative Medicine and Cellular Longevity, 2019, 1–11. https://doi.org/10.1155/2019/3756750
34 Tian, D., & Meng, J. (2019). Exercise for prevention and relief of cardiovascular disease: Prognoses, mechanisms, and approaches. Oxidative Medicine and Cellular Longevity, 2019, 1–11. https://doi.org/10.1155/2019/3756750
35 Yeates, K., Lohfeld, L., Sleeth, J., Morales, F., Rajkotia, Y., & Ogedegbe, O. (2015). A global perspective on cardiovascular disease in vulnerable populations. Canadian Journal of Cardiology, 31(9), 1081–1093. https://doi.org/10.1016/j.cjca.2015.06.035
36 Murtagh, E. M., Murphy, M. H., & Boone-Heinonen, J. (2010). Walking: The first steps in cardiovascular disease prevention. Current Opinion in Cardiology, 25(5), 490–496. https://doi.org/10.1097/hco.0b013e32833ce972
37 Steptoe, A., & Kivimäki, M. (2012). Stress and cardiovascular disease. Nature Reviews Cardiology, 9(6), 360–370. https://doi.org/10.1038/nrcardio.2012.45
38 Dar, T., Radfar, A., Abohashem, S., Pitman, R. K., Tawakol, A., & Osborne, M. T. (2019). Psychosocial stress and cardiovascular disease. Current Treatment Options in Cardiovascular Medicine, 21(5). https://doi.org/10.1007/s11936-019-0724-5
39 Semeco, A. (2017, October 12). 9 benefits of coenzyme Q10 (coq10). Healthline. Retrieved July 28, 2022, from https://www.healthline.com/nutrition/coenzyme-q10#TOC_TITLE_HDR_1
40 Vaduganathan, M., Butler, J., Pitt, B., & Gheorghiade, M. (2015). Contemporary drug development in heart failure. Circulation: Heart Failure, 8(4), 826–831. https://doi.org/10.1161/circheartfailure.115.002271
41 Deichmann, R., Lavie, C., & Andrews, S. (2010). Coenzyme q10 and statin-induced
mitochondrial dysfunction. The Ochsner journal, 10(1), 16–21.
42 Mortensen, S. A., Rosenfeldt, F., Kumar, A., Dolliner, P., Filipiak, K. J., Pella, D., Alehagen, U., Steurer, G., & Littarru, G. P. (2014). The effect of coenzyme Q 10 on morbidity and mortality in chronic heart failure. JACC: Heart Failure, 2(6), 641–649. https://doi.org/10.1016/j.jchf.2014.06.008
43 Morisco, C., Trimarco, B., & Condorelli, M. (1993). Effect of coenzyme Q10 therapy in patients with congestive heart failure: A long-term Multicenter Randomized Study. The Clinical Investigator, 71(S8). https://doi.org/10.1007/bf00226854
44 DiNicolantonio, J. J., Bhutani, J., McCarty, M. F., & O’Keefe, J. H. (2015). Coenzyme Q10 for the treatment of heart failure: A review of the literature. Open Heart, 2(1). https://doi.org/10.1136/openhrt-2015-000326
45 U.S. National Library of Medicine. (n.d.). Omega-3 fats - good for your heart: Medlineplus medical encyclopedia. MedlinePlus. Retrieved August 7, 2022, from https://medlineplus.gov/ency/patientinstructions/000767.htm#:~:text=Omega
46 Kar S, Webel R. Fish oil supplementation & coronary artery disease: does it help? MoMed. 2012 Mar-Apr;109(2):142-5. PMID: 22675796; PMCID: PMC6181727.
47 Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition, 3(1), 1–7. https://doi.org/10.3945/an.111.000893
48 Mayo Foundation for Medical Education and Research. (2021, February 4). L-arginine. Mayo Clinic. Retrieved July 28, 2022, from https://www.mayoclinic.org/drugs-supplements-l-arginine/art-20364681
49 Tousoulis, D., Antoniades, C., Tentolouris, C., Goumas, G., Stefanadis, C., & Toutouzas, P. (2002). L-arginine in cardiovascular disease: Dream or reality? Vascular Medicine, 7(3), 203–211. https://doi.org/10.1191/1358863x02vm434ra
50 Griffin, R. M. (n.d.). Arginine (L-arginine) supplements: Uses, side effects, and more. WebMD. Retrieved August 5, 2022, from https://www.webmd.com/diet/supplement-guide-l-arginine
51 Lopes Sakamoto, F., Metzker Pereira Ribeiro, R., Amador Bueno, A., & Oliveira Santos, H. (2019). Psychotropic effects of L-Theanine and its clinical properties: From the management of anxiety and stress to a potential use in schizophrenia. Pharmacological Research, 147, 104395. https://doi.org/10.1016/j.phrs.2019.104395
52 Adhikary, R., & Mandal, V. (2017). L -Theanine: A potential multifaceted natural bioactive amide as health supplement. Asian Pacific Journal of Tropical Biomedicine, 7(9), 842–848. https://doi.org/10.1016/j.apjtb.2017.08.005
53 Williams, J. L., Everett, J. M., D’Cunha, N. M., Sergi, D., Georgousopoulou, E. N., Keegan, R. J., McKune, A. J., Mellor, D. D., Anstice, N., & Naumovski, N. (2019). The effects of green tea amino acid L-theanine consumption on the ability to manage stress and anxiety levels: A systematic review. Plant Foods for Human Nutrition, 75(1), 12–23. https://doi.org/10.1007/s11130-019-00771-5
54 U.S. Department of Health and Human Services. (n.d.). Office of dietary supplements - magnesium. NIH Office of Dietary Supplements. Retrieved June 22, 2022, from https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/
55 Tangvoraphonkchai, K., & Davenport, A. (2018). Magnesium and cardiovascular disease. Advances in Chronic Kidney Disease, 25(3), 251–260. https://doi.org/10.1053/j.ackd.2018.02.010
56 Houston, M. (2011). The role of magnesium in hypertension and cardiovascular disease. The Journal of Clinical Hypertension, 13(11), 843–847. https://doi.org/10.1111/j.1751-7176.2011.00538.x
57 Dibaba, D. T., Xun, P., Song, Y., Rosanoff, A., Shechter, M., & He, K. (2017). The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or Noncommunicable Chronic Diseases: A meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition. https://doi.org/10.3945/ajcn.117.155291
58 Serban, M. C., Sahebkar, A., Zanchetti, A., Mikhailidis, D. P., Howard, G., Antal, D., Andrica, F., Ahmed, A., Aronow, W. S., Muntner, P., Lip, G. Y., Graham, I., Wong, N., Rysz, J., & Banach, M. (2016). Effects of quercetin on blood pressure: A systematic review and meta‐analysis of Randomized Controlled Trials. Journal of the American Heart Association,
5(7). https://doi.org/10.1161/jaha.115.002713
59 Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., & Shin, H.-S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. European Journal of Medicinal Chemistry, 155, 889–904. https://doi.org/10.1016/j.ejmech.2018.06.053
60 Ostadmohammadi, V., Milajerdi, A., Ayati, E., Kolahdooz, F., & Asemi, Z. (2019). Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: A systematic review and meta‐analysis of Randomized Controlled Trials. Phytotherapy Research, 33(5), 1330–1340. https://doi.org/10.1002/ptr.6334
61 Raman, R. (2020, July 1). What is quercetin? benefits, foods, dosage, and side effects. Healthline. Retrieved July 30, 2022, from https://www.healthline.com/nutrition/quercetin#sources-dosage
62 Moser, M., & Chun, O. (2016). Vitamin C and heart health: A review based on findings from Epidemiologic Studies. International Journal of Molecular Sciences, 17(8), 1328. https://doi.org/10.3390/ijms17081328
63 Oliveira, I. J., de Souza, V. V., Motta, V., & Da-Silva, S. L. (2014). Effects of oral vitamin C supplementation on anxiety in students: A double-blind, randomized, placebo-controlled trial. Pakistan Journal of Biological Sciences, 18(1), 11–18. https://doi.316 org/10.3923/pjbs.2015.11.18
64 Centers for Disease Control and Prevention. (2022, July 12). Facts about hypertension. Centers for Disease Control and Prevention. Retrieved July 18, 2022, from https://www.cdc.gov/bloodpressure/facts.htm
65 Department of Health. Physical Inactivity and Cardiovascular Disease. (n.d.). Retrieved August 8, 2022, from https://www.health.ny.gov/diseases/chronic/cvd.htm
66 Health, B. (2018, August 31). How sitting too much can lead to heart disease. Beaumont Health. Retrieved August 8, 2022, from https://www.beaumont.org/health-wellness/blogs/how-sitting-too-much-can-lead-to-heart-disease
67 Murtagh, E. M., Murphy, M. H., & Boone-Heinonen, J. (2010). Walking: The first steps in cardiovascular disease prevention. Current Opinion in Cardiology, 25(5), 490–496. https://doi.org/10.1097/hco.0b013e32833ce972
68 Department of Health. Physical Inactivity and Cardiovascular Disease. (n.d.). Retrieved August 8, 2022, from https://www.health.ny.gov/diseases/chronic/cvd.htm
69 Temple, N. (2018). Fat, sugar, whole grains and heart disease: 50 years of confusion. Nutrients, 10(1), 39. https://doi.org/10.3390/nu10010039
70 Livesey, G., & Livesey, H. (2019). Coronary heart disease and dietary carbohydrate, glycemic index, and glycemic load: Dose-response meta-analyses of prospective cohort studies. Mayo Clinic Proceedings: Innovations, Quality & Outcomes, 3(1), 52–69. https://doi.org/10.1016/j.mayocpiqo.2018.12.007
71 NHS. (n.d.). NHS choices. Retrieved August 3, 2022, from https://www.nhs.uk/livewell/eat-well/how-to-eat-a-balanced-diet/what-are-processed-foods/
72 Juul, F., Vaidean, G., & Parekh, N. (2021). Ultra-processed foods and cardiovascular diseases: Potential mechanisms of action. Advances in Nutrition, 12(5), 1673–1680.https://doi.org/10.1093/advances/nmab049
73 Steptoe, A., & Kivimäki, M. (2012). Stress and cardiovascular disease. Nature Reviews Cardiology, 9(6), 360–370. https://doi.org/10.1038/nrcardio.2012.45
74 Michos, E. D. (2021, August 8). Sitting disease: How a sedentary lifestyle affects heart health. Johns Hopkins Medicine. Retrieved August 8, 2022, from https://www.hopkinsmedicine.org/health/wellness-and-prevention/sitting-disease-how-a-sedentary-lifestyle-affects-heart-health
75 Smoking and heart disease. Smoking and heart disease - Better Health Channel. (n.d.). Retrieved August 3, 2022, from https://www.betterhealth.vic.gov.au/health/healthyliving/smoking-and-heart-disease
76 U.S. Department of Health and Human Services. (n.d.). Smoking and your heart - how smoking affects the heart and blood vessels. National Heart Lung and Blood Institute. Retrieved August 3, 2022, from https://www.nhlbi.nih.gov/health/heart/smoking
77 Taylor, D. H., Hasselblad, V., Henley, S. J., Thun, M. J., & Sloan, F. A. (2002). Benefits of smoking cessation for longevity. American Journal of Public Health, 92(6), 990–996. https://doi.org/10.2105/ajph.92.6.990


Ch. 7: Candida Protocol

1 https://hms.harvard.edu/news/combating-candida-albicans
2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163673/
3 https://www.cdc.gov/fungal/diseases/candidiasis/index.html
4 https://www.cdc.gov/fungal/diseases/candidiasis/invasive/index.html
5 https://www.cdc.gov/fungal/diseases/candidiasis/genital/index.html
6 https://www.cdc.gov/fungal/diseases/candidiasis/thrush/index.html
7 https://www.ei-resource.org/articles/candida-and-gut-dysbiosis-articles/the-candida-
aldehyde-detox-pathway-and-the-molybdenum-connection/
8 https://pubmed.ncbi.nlm.nih.gov/34661898/
9 https://pubmed.ncbi.nlm.nih.gov/31315227/
10 Kunyeit, L., Kurrey, N. K., Anu-Appaiah, K. A., & Rao, R. P. (2019). Probiotic Yeasts Inhibit Virulence of Non-albicans Candida Species. mBio, 10(5), e02307-19. https://doi.org/10.1128/mBio.02307-19
11 Wu, Y., Hu, S., Wu, C., Gu, F., & Yang, Y. (2022). Probiotics: Potential Novel Therapeutics Against Fungal Infections. Frontiers in cellular and infection microbiology, 11, 793419. https://doi.org/10.3389/fcimb.2021.793419
12 https://pubmed.ncbi.nlm.nih.gov/30166063/
13 Donohoe, D. R., Garge, N., Zhang, X., Sun, W., O’Connell, T. M., Bunger, M. K., & Bultman, S. J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell metabolism, 13(5), 517–526. https://doi.
org/10.1016/j.cmet.2011.02.018 https://pubmed.ncbi.nlm.nih.gov/21531334/
14 https://pubmed.ncbi.nlm.nih.gov/31315227/
15 Talattof, Z., Azad, A., Zahed, M., & Shahradnia, N. (2018). Antifungal Activity of Xylitol against Candida albicans: An in vitro Study. The journal of contemporary dental practice, 19(2), 125–129. https://doi.org/10.5005/jp-journals-10024-2225
16 Pizzo, G., Giuliana, G., Milici, M. E., & Giangreco, R. (2000). Effect of dietary carbohydrates on the in vitro epithelial adhesion of Candida albicans, Candida tropicalis, and Candida krusei. The new microbiologica, 23(1), 63–71
17 Yagnik, D., Serafin, V., & J Shah, A. (2018). Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression. Scientific reports, 8(1), 1732. https://doi.org/10.1038/s41598-017-18618-x
18 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768360/
19 Ogbolu, D. O., Oni, A. A., Daini, O. A., & Oloko, A. P. (2007). In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria. Journal of medicinal food, 10(2), 384–387. https://doi.org/10.1089/jmf.2006.1209
20 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748643/
21 Behmanesh, F., Pasha, H., Sefidgar, A. A., Taghizadeh, M., Moghadamnia, A. A., Adib Rad, H., & Shirkhani, L. (2015). Antifungal Effect of Lavender Essential Oil (Lavandula angustifolia) and Clotrimazole on Candida albicans: An In Vitro Study. Scientifica, 2015, 261397. https://doi.org/10.1155/2015/261397
22 Nenoff, P., Haustein, U. F., & Brandt, W. (1996). Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro. Skin pharmacology: the official journal of the Skin Pharmacology Society, 9(6), 388–394. https://doi.org/10.1159/000211450
23 Bharti, S., Nayaka, S., & kumar, R. (2022). EVALUATION OF SOME TRADITIONAL THERAPEUTIC PROPERTIES OF USNEA LONGISSIMA (ASCOMYCOTA, LICHENIZED FUNGI): ANTIMICROBIAL, ANTIQUORUM AND ANTIOXIDANT. Journal of Microbiology, Biotechnology and Food Sciences, 11(4), e3163. https://doi.org/10.55251/jmbfs.3163 https://office2.jmbfs.org/index.php/JMBFS/article/view/3163
24 Jaramillo-Ordoñez, Cristhina Estefanía. (2020). In vitro antifungal and antibacterial activity of the ethanolic extract of Usnea laevis against Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa. Revista Medica Herediana , 31 (3), 169-174. https://dx.doi.org/10.20453/rmh.v31i3.3806 http://www.scielo.org.pe/scielo.php?pid=S1018-130X2020000300169&script=sci_arttext
25 Popovici V, Bucur L, Calcan SI, Cucolea EI, Costache T, Rambu D, Schröder V, Gîrd CE, Gherghel D, Vochita G, Caraiane A, Badea V. Elemental Analysis and In Vitro Evaluation of Antibacterial and Antifungal Activities of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. Plants. 2022; 11(1):32. https://doi.org/10.3390/plants11010032 https://www.mdpi.com/2223-7747/11/1/32/htm
26 https://pubmed.ncbi.nlm.nih.gov/18553017/
27 Yamashita, M., Sawano, J., Umeda, R., Tatsumi, A., Kumeda, Y., & Iida, A. (2021). Structure-Activity Relationship Studies of Antimicrobial Naphthoquinones Derived from Constituents of Tabebuia avellanedae. Chemical & pharmaceutical bulletin, 69(7), 661–673. https://doi.org/10.1248/cpb.c21-00208
28 Gómez Castellanos, J. R., Prieto, J. M., & Heinrich, M. (2009). Red Lapacho (Tabebuia impetiginosa)-a global ethnopharmacological commodity?. Journal of ethnopharmacology, 121(1), 1–13. https://doi.org/10.1016/j.jep.2008.10.004
29 Bhardwaj A, Gupta P, Kumar N, Mishra J, Kumar A, Rakhee R, Misra K. Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), Inhibits Candida Biofilms: A Metabolomic Approach. Int J Med Mushrooms. 2017;19(8):685-696. doi:10.1615/IntJMedMushrooms.2017021225. PMID: 29199568. https://pubmed.ncbi.nlm.
nih.gov/29199568/
30 BHAT, Z. A., WANI, A. H., WAR, J. M., & BHAT, M. Y. (2021). Major bioactive properties of ganoderma polysaccharides: A review. Asian Journal of Pharmaceutical and Clinical Research, 11-24. https://www.researchgate.net
31 https://www.ncbi.nlm.nih.gov/books/NBK92757/
32 Knežević A, Stajić M, Sofrenić I, Stanojković T, Milovanović I, Tešević V, et al. (2018) Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS ONE 13(8): e0203064
33 SK, D., Sridhar, K. R., & Gupta, M. K. Hericium erinaceus-A Rich Source of Diverse Bioactive Metabolites. https://www.fungalbiotec.org/pdf/FGBT_1_2_2.pdf
34 Song X, Gaascht F, Schmidt-Dannert C, Salomon CE. 2020 – Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique North American Hericium sp. fungus. Molecules 25 (4), p 963. doi: 10.3390/molecules25040963
35 Xie, Y., Liu, X., & Zhou, P. (2020). In vitro Antifungal Effects of Berberine Against Candida spp. In Planktonic and Biofilm Conditions. Drug design, development and therapy, 14, 87–101. https://doi.org/10.2147/DDDT.S230857 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957002
36 Chen, W.-C., Liou, S.-S., Tzeng, T.-F., Lee, S. L., and Liu, I. M. (2012). Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats. BMC Complement. Altern. Med. 12:226. doi: 10.1186/1472-6882-12-226
37 Xing, X., Liao, Z., Tan, F., Zhu, Z., Jiang, Y., & Cao, Y. (2019). Effect of Nicotinamide Against Candida albicans. Frontiers in microbiology, 10, 595. https://doi.org/10.3389/fmicb.2019.00595
38 Omura, Y., O’Young, B., Jones, M., Pallos, A., Duvvi, H., & Shimotsuura, Y. (2011). Caprylic acid in the effective treatment of intractable medical problems of frequent urination, incontinence, chronic upper respiratory infection, root canalled tooth infection, ALS, etc., caused by asbestos & mixed infections of Candida albicans, Helicobacter pylori & cytomegalovirus with or without other microorganisms & mercury. Acupuncture & electro-therapeutics research, 36(1-2), 19–64. https://doi.org/10.3727/036012911803860886
39 Bae, Y. S., & Rhee, M. S. (2019). Short-Term Antifungal Treatments of Caprylic Acid with Carvacrol or Thymol Induce Synergistic 6-Log Reduction of Pathogenic Candida albicans by Cell Membrane Disruption and Efflux Pump Inhibition. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry,
and pharmacology, 53(2), 285–300. https://doi.org/10.33594/000000139
40 Ho, K. V., Lei, Z., Sumner, L. W., Coggeshall, M. V., Hsieh, H. Y., Stewart, G. C., & Lin, C. H. (2018). Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites, 8(4), 58. https://doi.org/10.3390/metabo8040058
41 Yun, J., Lee, H., Ko, H. J., Woo, E. R., & Lee, D. G. (2015). Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochimica et biophysica acta, 1848(2), 695–701. https://doi.org/10.1016/j.bbamem.2014.11.019
42 Murugesh, J., Annigeri, R. G., Mangala, G. K., Mythily, P. H., & Chandrakala, J. (2019). Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: An in vitro study. Journal of oral and maxillofacial pathology: JOMFP, 23(2), 305. https://doi.org/10.4103/jomfp.JOMFP_200_18
43 https://pubmed.ncbi.nlm.nih.gov/33827515/ 317
44 Wermig-Morgan, Julia. (2020). Elderberry is anti-bacterial, anti-viral and modulates the immune system: anti-bacterial, anti-viral and immunomodulatory non-clinical (in-vitro) effects of elderberry fruit and flowers (Sambucus nigra): a systematic review
45 Pereira, V. V., Pereira, N. R., Pereira, R., Duarte, L. P., Takahashi, J. A., & Silva, R. R. (2022). Synthesis and Antimicrobial Activity of Ursolic Acid Ester Derivatives. Chemistry & biodiversity, 19(1), e202100566. https://doi.org/10.1002/cbdv.202100566
46 Gleńsk, M., Czapińska, E., Woźniak, M., Ceremuga, I., Włodarczyk, M., Terlecki, G., Ziółkowski, P., & Seweryn, E. (2017). Triterpenoid Acids as Important Antiproliferative Constituents of European Elderberry Fruits. Nutrition and cancer, 69(4), 643–651. https://doi.org/10.1080/01635581.2017.1295085
47 https://www.ncbi.nlm.nih.gov/books/NBK92757/
48 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485961/
49 https://pubmed.ncbi.nlm.nih.gov/17651080/
50 https://pubmed.ncbi.nlm.nih.gov/25012787/
51 https://pubmed.ncbi.nlm.nih.gov/32824103
52 https://www.msn.com/en-us/health/medical/chemicals-in-shampoo-and-makeupare-linked-to-early-death-study-finds/ar-AAPqwT2
53 https://abcnews.go.com/Health/wireStory/study-half-us-cosmetics-toxic-chemicals-78298811
54 https://www.hsph.harvard.edu/news/features/fluoride-childrens-health-grandjean-choi/
55 https://pubmed.ncbi.nlm.nih.gov/28913736/
56 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068600/
57 https://scholarworks.umt.edu/cgi/viewcontent.cgi?article=1079&context=utpp
58 https://pubmed.ncbi.nlm.nih.gov/27995346/
59 https://www.washingtontimes.com/news/2019/aug/20/exercising-outdoors-will-reduce-more-stress-indoor/
60 de Oliveira Santos, G. C., Vasconcelos, C. C., Lopes, A., de Sousa Cartágenes, M., Filho, A., do Nascimento, F., Ramos, R. M., Pires, E., de Andrade, M. S., Rocha, F., & de Andrade Monteiro, C. (2018). Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Frontiers in microbiology, 9, 1351. https://doi.org/10.3389/fmicb.2018.01351


Ch. 8: Food Poisoning Protocol

1 Metreveli, M., Bulia, S., Shalamberidze, I., Tevzadze, L., Tsanava, S., Goenaga, J. C., Stingl, K., & Imnadze, P. (2022). Campylobacteriosis, Shigellosis and Salmonellosis in Hospitalized Children with Acute Inflammatory Diarrhea in Georgia. Pathogens (Basel, Switzerland), 11(2), 232. https://doi.org/10.3390/pathogens11020232
2 Vanhauwaert, E., Matthys, C., Verdonck, L., & De Preter, V. (2015). Low-residue and low-fiber diets in gastrointestinal disease management. Advances in nutrition (Bethesda, Md.), 6(6), 820–827. https://doi.org/10.3945/an.115.009688
3 Weir, S. B. S. & Akhondi, H. (2021). Bland Diet. In Statpearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK538142/
4 United States Department of Agriculture. (2016, December 2). Food Safety and Inspection Service. Cleanliness Helps Prevent Foodborne Illness | Food Safety and Inspection Service. Retrieved July 7, 2022, from shorturl.at/hHMNX
5 United States Food Safety. (2022, June 23). Cook to a safe minimum internal temperature. FoodSafety.gov. Retrieved July 7, 2022, from https://www.foodsafety.gov/foodsafety-charts/safe-minimum-internal-temperatures
6 United States Department of Agriculture. (2020, July 31). Leftovers and Food Safety. USDA Food Safety and Inspection Service. Retrieved July 7, 2022, from shorturl.at/epyzS
7 Shaheen, N. A., Alqahtani, A. A., Assiri, H., Alkhodair, R., & Hussein, M. A. (2018). Public knowledge of dehydration and fluid intake practices: variation by participants’ characteristics. BMC public health, 18(1), 1346. https://doi.org/10.1186/s12889-018-6252-5
8 https://illinoiscancercare.com/news/electrolytedrinkrecipe/
9 Chyka, P. A., Seger, D., Krenzelok, E. P., Vale, J. A., American Academy of Clinical Toxicology, & European Association of Poisons Centres and Clinical Toxicologists (2005). Position paper: Single-dose activated charcoal. Clinical toxicology (Philadelphia, Pa.), 43(2), 61–87. https://doi.org/10.1081/clt-200051867
10 Zellner, T., Prasa, D., Färber, E., Hoffmann-Walbeck, P., Genser, D., & Eyer, F. (2019). The Use of Activated Charcoal to Treat Intoxications. Deutsches Arzteblatt international, 116(18), 311–317. https://doi.org/10.3238/arztebl.2019.0311 11 Zellner, T., Prasa, D., Färber, E., Hoffmann-Walbeck, P., Genser, D., & Eyer, F. (2019). The Use of Activated Charcoal to Treat Intoxications. Deutsches Arzteblatt international, 116(18), 311–317. https://doi.org/10.3238/arztebl.2019.0311
12 Moosavi M. (2017). Bentonite Clay as a Natural Remedy: A Brief Review. Iranian journal of public health, 46(9), 1176–1183
13 Damrau F. (1961). The value of bentonite for diarrhea. The Medical annals of the District of Columbia, 30, 326–328
14 U.S. Food and Drug Administration. (2016, March 23). FDA warns consumers not to use “Best bentonite clay”. FDA.gov. Retrieved July 7, 2022, from shorturl.at/uIMW7
15 Billoo, A. G., Memon, M. A., Khaskheli, S. A., Murtaza, G., Iqbal, K., Saeed Shekhani, M., & Siddiqi, A. Q. (2006). Role of a probiotic (Saccharomyces boulardii) in management and prevention of diarrhoea. World journal of gastroenterology, 12(28),
4557–4560. https://doi.org/10.3748/wjg.v12.i28.4557
16 Isolauri E. (2003). Probiotics for infectious diarrhoea. Gut, 52(3), 436–437. https://doi.org/10.1136/gut.52.3.436
17 Lacombe, G., & St-Onge, M. (2016). Towards evidence-based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 1: Silibinin in suspected amatoxin-containing mushroom poisoning. Emergency medicine journal: EMJ, 33(1), 76–77. https://doi.org/10.1136/emermed-2015-205558.1
18 Mengs, U., Pohl, R. T., & Mitchell, T. (2012). Legalon® SIL: the antidote of choice in patients with acute hepatotoxicity from amatoxin poisoning. Current pharmaceutical biotechnology, 13(10), 1964–1970. https://doi.org/10.2174/138920112802273353
19 Mohr, C., Jensen, C., Padden, N., Besel, J. M., & Brant, J. M. (2021). Peppermint Essential Oil for Nausea and Vomiting in Hospitalized Patients: Incorporating Holistic Patient Decision Making Into the Research Design. Journal of holistic nursing: official journal of the American Holistic Nurses’ Association, 39(2), 126–134. https://doi.org/10.1177/0898010120961579
20 Maghami, M., Afazel, M. R., Azizi-Fini, I., & Maghami, M. (2020). The effect of aromatherapy with peppermint essential oil on nausea and vomiting after cardiac surgery: A randomized clinical trial. Complementary therapies in clinical practice, 40, 101199.
https://doi.org/10.1016/j.ctcp.2020.101199
21 Jafarimanesh, H., Akbari, M., Hoseinian, R., Zarei, M., & Harorani, M. (2020). The Effect of Peppermint (Mentha piperita) Extract on the Severity of Nausea, Vomiting and Anorexia in Patients with Breast Cancer Undergoing Chemotherapy: A Randomized Controlled Trial. Integrative cancer therapies, 19, 1534735420967084. https://doi.org/10.1177/1534735420967084 Format:
22 McKay, D. L., & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy research: PTR, 20(8), 619–633. https://doi.org/10.1002/ptr.1936
23 Lete, I., & Allué, J. (2016). The Effectiveness of Ginger in the Prevention of Nausea and Vomiting during Pregnancy and Chemotherapy. Integrative medicine insights, 11, 11–17. https://doi.org/10.4137/IMI.S36273
24 Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences, 25(2), 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004
25 Amarowicz, R., Dykes, G. A., & Pegg, R. B. (2008). Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia, 79(3), 217–219. https://doi.org/10.1016/j.fitote.2007.11.019
26 Cheraghali, F., Shojaee-Aliabadi, S., Hosseini, S. M., Mirmoghtadaie, L., Mortazavian, A. M., Ghanati, K., Abedi, A. S., & Moslemi, M. (2018). Characterization of Microcapsule Containing Walnut (Juglans regia L.) Green Husk Extract as Preventive Antioxidant and Antimicrobial Agent. International journal of preventive medicine, 9, 101. https://doi.org/10.4103/ijpvm.IJPVM_308_18
27 Su, P. W., Yang, C. H., Yang, J. F., Su, P. Y., & Chuang, L. Y. (2015). Antibacterial Activities and Antibacterial Mechanism of Polygonum cuspidatum Extracts against Nosocomial Drug-Resistant Pathogens. Molecules (Basel, Switzerland), 20(6), 11119–11130. https://doi.org/10.3390/molecules200611119
28 Heimesaat, M. M., Mousavi, S., Weschka, D., & Bereswill, S. (2021). Garlic Essential Oil as Promising Option for the Treatment of Acute Campylobacteriosis-Results from a Preclinical Placebo-Controlled Intervention Study. Microorganisms, 9(6), 1140. https://doi.org/10.3390/microorganisms9061140
29 Lu, X., Rasco, B. A., Jabal, J. M., Aston, D. E., Lin, M., & Konkel, M. E. (2011). Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy. Applied and environmental microbiology, 77(15), 5257–5269. https://doi.org/10.1128/AEM.02845-10
30 Chowdhury, A. K., Ahsan, M., Islam, S. N., & Ahmed, Z. U. (1991). Efficacy of aqueous extract of garlic & allicin in experimental shigellosis in rabbits. The Indian journal of medical research, 93, 33–36
31 Tavakoli, H. R., Mashak, Z., Moradi, B., & Sodagari, H. R. (2015). Antimicrobial Activities of the Combined Use of Cuminum Cyminum L. Essential Oil, Nisin and Storage Temperature Against Salmonella typhimurium and Staphylococcus aureus In Vitro. Jundishapur journal of microbiology, 8(4), e24838. https://doi.org/10.5812/jjm.8(4)2015.24838
32 Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences, 25(2), 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004
33 Silva, N., Alves, S., Gonçalves, A., Amaral, J. S., & Poeta, P. (2013). Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria. Food science and technology international = Ciencia y tecnologia de los alimentos internacional, 19(6), 503–510. https://doi.org/10.1177/1082013212442198
34 Holtz, L. R., Neill, M. A., & Tarr, P. I. (2009). Acute bloody diarrhea: a medical emergency for patients of all ages. Gastroenterology, 136(6), 1887–1898. https://doi.org/10.1053/j.gastro.2009.02.059


Ch. 9: Gerd and Acid Reflux Protocol

1 Mittal, R.K. & Goyal,R.K. (2006). Sphincter mechanisms at the lower end of the esophagus. GI Motility Online, www.GIMotilityonline.com; doi:10.1038/gimo14, 2006
2 Jarosz, M., & Taraszewska, A. (2014). Risk factors for gastroesophageal reflux disease: the role of diet. Przeglad gastroenterologiczny, 9(5), 297–301. https://doi.org/10.5114/pg.2014.46166
3 Morozov, S., Isakov, V., & Konovalova, M. (2018). Fiber-enriched diet helps to control 318 symptoms and improves esophageal motility in patients with non-erosive gastroesophageal reflux disease. World journal of gastroenterology, 24(21), 2291–2299. https://doi.org/10.3748/wjg.v24.i21.2291
4 Jarosz, M., & Taraszewska, A. (2014). Risk factors for gastroesophageal reflux disease: the role of diet. Przeglad gastroenterologiczny, 9(5), 297–301. https://doi.org/10.5114/pg.2014.46166
5 Song, J. H., Chung, S. J., Lee, J. H., Kim, Y. H., Chang, D. K., Son, H. J., Kim, J. J., Rhee, J. C., & Rhee, P. L. (2011). Relationship between gastroesophageal reflux symptoms and dietary factors in Korea. Journal of neurogastroenterology and motility, 17(1), 54–60. https://doi.org/10.5056/jnm.2011.17.1.54
6 Iwakiri, K., Kobayashi, M., Kotoyori, M., Yamada, H., Sugiura, T., & Nakagawa, Y. (1996). Relationship between postprandial esophageal acid exposure and meal volume and fat content. Digestive diseases and sciences, 41(5), 926–930. https://doi.org/10.1007/BF02091532
7 Holloway, R. H., Lyrenas, E., Ireland, A., & Dent, J. (1997). Effect of intraduodenal fat on lower oesophageal sphincter function and gastro-oesophageal reflux. Gut, 40(4), 449–453. https://doi.org/10.1136/gut.40.4.449
8 Śmiechowska M. & Cugowska M. (2011). Rola żywności i żywienia w chorobie refleksowej [Polish] Bromat Chem Toksykol. 3, 298–304
9 Rodriguez-Stanley, S., Collings, K. L., Robinson, M., Owen, W., & Miner, P. B., Jr (2000). The effects of capsaicin on reflux, gastric emptying and dyspepsia. Alimentary pharmacology & therapeutics, 14(1), 129–134. https://doi.org/10.1046/j.1365-
2036.2000.00682.x
10 Jarosz, M., & Taraszewska, A. (2014). Risk factors for gastroesophageal reflux disease: the role of diet. Przeglad gastroenterologiczny, 9(5), 297–301. https://doi.org/10.5114/pg.2014.46166
11 Morales-González, J. A., Madrigal-Bujaidar, E., Sánchez-Gutiérrez, M., Izquierdo-Vega, J. A., Valadez-Vega, M., Álvarez-González, I., Morales-González, Á., & Madrigal-Santillán, E. (2019). Garlic (Allium sativum L.): A Brief Review of Its Antigenotoxic Effects. Foods (Basel, Switzerland), 8(8), 343. https://doi.org/10.3390/foods8080343
12 Allen, M. L., Mellow, M. H., Robinson, M. G., & Orr, W. C. (1990). The effect of raw onions on acid reflux and reflux symptoms. The American journal of gastroenterology, 85(4), 377–380
13 Dibley, L. B., Norton, C., & Jones, R. (2010). Don’t eat tomatoes: patient’s self-reported experiences of causes of symptoms in gastro-oesophageal reflux disease. Family practice, 27(4), 410–417. https://doi.org/10.1093/fampra/cmq020
14 Surdea-Blaga, T., Negrutiu, D. E., Palage, M., & Dumitrascu, D. L. (2019). Food and Gastroesophageal Reflux Disease. Current medicinal chemistry, 26(19), 3497–3511. https://doi.org/10.2174/0929867324666170515123807
15 Song, J. H., Chung, S. J., Lee, J. H., Kim, Y. H., Chang, D. K., Son, H. J., Kim, J. J., Rhee, J.C., & Rhee, P. L. (2011). Relationship between gastroesophageal reflux symptoms and dietary factors in Korea. Journal of neurogastroenterology and motility, 17(1), 54–60.https://doi.org/10.5056/jnm.2011.17.1.54
16 Johnson, T., Gerson, L., Hershcovici, T., Stave, C., & Fass, R. (2010). Systematic review: the effects of carbonated beverages on gastro-oesophageal reflux disease. Alimentary pharmacology & therapeutics, 31(6), 607–614. https://doi.org/10.1111/j.1365-2036.2010.04232.x
17 Jarosz, M., & Taraszewska, A. (2014). Risk factors for gastroesophageal reflux disease: the role of diet. Przeglad gastroenterologiczny, 9(5), 297–301. https://doi.org/10.5114/pg.2014.46166
18 Morozov S, Isakov V, Konovalova M. Fiber-enriched diet helps to control symptoms and improves esophageal motility in patients with non-erosive gastroesophageal reflux disease. World J Gastroenterol. 2018;24(21):2291-2299. doi:10.3748/wjg.v24.i21.229. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989243/
19 Karim, S., Jafri, W., Faryal, A., Majid, S., Salih, M., Jafri, F., Hamid, S., Shah, H. A., Nawaz, Z., & Tariq, U. (2011). Regular post dinner walk; can be a useful lifestyle modification for gastroesophageal reflux. JPMA. The Journal of the Pakistan Medical Association, 61(6),526–530.
20 Taraszewska A. (2021). Risk factors for gastroesophageal reflux disease symptoms related to lifestyle and diet. Roczniki Panstwowego Zakladu Higieny, 72(1), 21–28. https://doi.org/10.32394/rpzh.2021.0145
21 Mendes-Filho, A. M., Moraes-Filho, J. P., Nasi, A., Eisig, J. N., Rodrigues, T. N., Barbutti, R. C., Campos, J. M., & Chinzon, D. (2014). Influence of exercise testing in gastroesophageal reflux in patients with gastroesophageal reflux disease. Arquivos brasileiros de cirurgia digestiva: ABCD = Brazilian archives of digestive surgery, 27(1), 3–8. https://doi.org/10.1590/s0102-67202014000100002
22 Karim, S., Jafri, W., Faryal, A., Majid, S., Salih, M., Jafri, F., Hamid, S., Shah, H. A., Nawaz, Z., & Tariq, U. (2011). Regular post dinner walk; can be a useful lifestyle modification for gastroesophageal reflux. JPMA. The Journal of the Pakistan Medical Association, 61(6), 526–530.
23 Fujiwara, Y., Machida, A., Watanabe, Y., Shiba, M., Tominaga, K., Watanabe, T., Oshitani, N., Higuchi, K., & Arakawa, T. (2005). Association between dinner-to-bed time and gastro-esophageal reflux disease. The American journal of gastroenterology, 100(12), 2633–2636. https://doi.org/10.1111/j.1572-0241.2005.00354.x
24 Kaltenbach, T., Crockett, S., & Gerson, L. B. (2006). Are lifestyle measures effective in patients with gastroesophageal reflux disease? An evidence-based approach. Archives of internal medicine, 166(9), 965–971. https://doi.org/10.1001/archinte.166.9.965
25 El-Serag H. (2008). The association between obesity and GERD: a review of the epidemiological evidence. Digestive diseases and sciences, 53(9), 2307–2312. https://doi.org/10.1007/s10620-008-0413-9
26 Mitchell, D. R., Derakhshan, M. H., Wirz, A. A., Ballantyne, S. A., & McColl, K. (2017). Abdominal Compression by Waist Belt Aggravates Gastroesophageal Reflux, Primarily by Impairing Esophageal Clearance. Gastroenterology, 152(8), 1881–1888. https://doi.org/10.1053/j.gastro.2017.02.036
27 Song, J. H., Chung, S. J., Lee, J. H., Kim, Y. H., Chang, D. K., Son, H. J., Kim, J. J., Rhee, J.C., & Rhee, P. L. (2011). Relationship between gastroesophageal reflux symptoms and dietary factors in Korea. Journal of neurogastroenterology and motility, 17(1), 54–60. https://doi.org/10.5056/jnm.2011.17.1.54
28 Pan, J., Cen, L., Chen, W., Yu, C., Li, Y., & Shen, Z. (2019). Alcohol Consumption and the Risk of Gastroesophageal Reflux Disease: A Systematic Review and Meta-analysis. Alcohol and alcoholism (Oxford, Oxfordshire), 54(1), 62–69. https://doi.org/10.1093/alcalc/agy063
29 Kahrilas, P. J., & Gupta, R. R. (1990). Mechanisms of acid reflux associated with cigarette smoking. Gut, 31(1), 4–10. https://doi.org/10.1136/gut.31.1.4
30 Ness-Jensen, E., Lindam, A., Lagergren, J., & Hveem, K. (2014). Tobacco smoking cessation and improved gastroesophageal reflux: a prospective population-based cohort study: the HUNT study. The American journal of gastroenterology, 109(2), 171–177. https://doi.org/10.1038/ajg.2013.414
31 Mendes-Filho, A. M., Moraes-Filho, J. P., Nasi, A., Eisig, J. N., Rodrigues, T. N., Barbutti, R. C., Campos, J. M., & Chinzon, D. (2014). Influence of exercise testing in gastroesophageal reflux in patients with gastroesophageal reflux disease. Arquivos brasileiros de cirurgia digestiva : ABCD = Brazilian archives of digestive surgery, 27(1), 3–8. https://doi.
org/10.1590/s0102-67202014000100002
32 Kandil, T. S., Mousa, A. A., El-Gendy, A. A., & Abbas, A. M. (2010). The potential therapeutic effect of melatonin in Gastro-Esophageal Reflux Disease. BMC gastroenterology, 10, 7. https://doi.org/10.1186/1471-230X-10-7
33 Pereira R. (2006). Regression of gastroesophageal reflux disease symptoms using dietary supplementation with melatonin, vitamins and aminoacids: comparison with omeprazole. Journal of pineal research, 41(3), 195–200. https://doi.org/10.1111/j.1600-079X.2006.00359.x
34 Werbach M. R. (2008). Melatonin for the treatment of gastroesophageal reflux disease. Alternative therapies in health and medicine, 14(4), 54–58.
35 Lukić, M., Segec, A., Segec, I., Pinotić, L., Pinotić, K., Atalić, B., Solić, K., & Vcev, A. (2012). The impact of the vitamins A, C and E in the prevention of gastroesophageal reflux disease, Barrett’s oesophagus and oesophageal adenocarcinoma. Collegium antropologicum,36(3), 867–872.
36 Jurna I. (1998). Analgetische und analgesiepotenzierende Wirkung von B-Vitaminenm [Analgesic and analgesia-potentiating action of B vitamins]. Schmerz (Berlin, Germany), 12(2), 136–141. https://doi.org/10.1007/s004829800054
37 Gualano, M., Stramentinoli, G., & Berti, F. (1983). Anti-inflammatory activity of S-adenosyl-L-methionine: interference with the eicosanoid system. Pharmacological research communications, 15(7), 683–696. https://doi.org/10.1016/s0031-6989(83)80040-x
38 Pereira R. (2006). Regression of gastroesophageal reflux disease symptoms using dietary supplementation with melatonin, vitamins and aminoacids: comparison with omeprazole. Journal of pineal research, 41(3), 195–200. https://doi.org/10.1111/j.1600-079X.2006.00359.x
39 Cheng, J., & Ouwehand, A. C. (2020). Gastroesophageal Reflux Disease and Probiotics: A Systematic Review. Nutrients, 12(1), 132. https://doi.org/10.3390/nu12010132
40 Brown, R., Sam, C. H., Green, T., & Wood, S. (2015). Effect of GutsyGum(tm), A Novel Gum, on Subjective Ratings of Gastro Esophageal Reflux Following A Refluxogenic Meal. Journal of dietary supplements, 12(2), 138–145. https://doi.org/10.3109/19390211.2014.950783
41 Muss, C., Mosgoeller, W., & Endler, T. (2013). Papaya preparation (Caricol®) in digestive disorders. Neuro endocrinology letters, 34(1), 38–46.
42 Ottillinger, B., Storr, M., Malfertheiner, P., & Allescher, H. D. (2013). STW 5 (Iberogast®)- a safe and effective standard in the treatment of functional gastrointestinal disorders. Wiener medizinische Wochenschrift (1946), 163(3-4), 65–72. https://doi.org/10.1007/s10354-012-0169-x
43 Yeh, A. M., & Golianu, B. (2014). Integrative Treatment of Reflux and Functional Dyspepsia in Children. Children (Basel, Switzerland), 1(2), 119–133. https://doi.org/10.3390/children1020119
44 Yeh, A. M., & Golianu, B. (2014). Integrative Treatment of Reflux and Functional Dyspepsia in Children. Children (Basel, Switzerland), 1(2), 119–133. https://doi.org/10.3390/children1020119
45 Setright, R. (2017). Prevention of Symptoms of Gastric Irritation (GERD) Using Two Herbal Formulas: An observational study. Journal of the Australian Traditional-Medicine Society, 23(2), 68+. https://link.gale.com/apps/doc/A544602451/AONE?u=anon~cd-12c9a0&sid=googleScholar&xid=1fac696f
46 Yeh, A. M., & Golianu, B. (2014). Integrative Treatment of Reflux and Functional Dyspepsia in Children. Children (Basel, Switzerland), 1(2), 119–133. https://doi.org/10.3390/children1020119
47 Joseph, S., Sabulal, B., George, V., Antony, K. R., & Janardhanan, K. K. (2011). Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta pharmaceutica (Zagreb, Croatia), 61(3), 335–342. https://doi.org/10.2478/v10007-011-0030-6
48 1.Wong, J. Y., Abdulla, M. A., Raman, J., Phan, C. W., Kuppusamy, U. R., Golbabapour, S., & Sabaratnam, V. (2013). Gastroprotective Effects of Lion’s Mane Mushroom Hericium erinaceus (Bull.:Fr.) Pers. (Aphyllophoromycetideae) Extract against Ethanol-Induced Ulcer in Rats. Evidence-based complementary and alternative medicine: eCAM, 2013,492976. https://doi.org/10.1155/2013/492976
49 5.Hussan, F., Mansor, A. S., Hassan, S. N., Tengku Nor Effendy Kamaruddin, T. N., Budin, S. B., & Othman, F. (2015). Anti-Inflammatory Property of Plantago major Leaf Extract Reduces the Inflammatory Reaction in Experimental Acetaminophen-Induced Liver Injury. Evidence-based complementary and alternative medicine: eCAM, 2015, 347861. https://doi.org/10.1155/2015/347861 319
50 Deters, A., Zippel, J., Hellenbrand, N., Pappai, D., Possemeyer, C., & Hensel, A. (2010). Aqueous extracts and polysaccharides from Marshmallow roots (Althea officinalis L.): cellular internalisation and stimulation of cell physiology of human epithelial cells in vitro. Journal of ethnopharmacology, 127(1), 62–69. https://doi.org/10.1016/j.jep.2009.09.050
51 Setright, R. (2017). Prevention of Symptoms of Gastric Irritation (GERD) Using Two Herbal Formulas: An observational study. Journal of the Australian Traditional-Medicine Society, 23(2), 68+. https://link.gale.com/apps/doc/A544602451/AONE?u=anon~cd-12c9a0&sid=googleScholar&xid=1fac696f
52 Nehra, A. K., Alexander, J. A., Loftus, C. G., & Nehra, V. (2018). Proton Pump Inhibitors: Review of Emerging Concerns. Mayo Clinic proceedings, 93(2), 240–246. https://doi.org/10.1016/j.mayocp.2017.10.022


Ch. 10: Inflammatory Bowel Disease (IBD) Protocol

1 Hou, J. K., Abraham, B., & El-Serag, H. (2011). Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. The American journal of gastroenterology, 106(4), 563–573. https://doi.org/10.1038/ajg.2011.44
2 David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B.E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820
3 Dalal, S. R., & Chang, E. B. (2014). The microbial basis of inflammatory bowel diseases. The Journal of clinical investigation, 124(10), 4190–4196. https://doi.org/10.1172/JCI72330
4 Haskey, N., & Gibson, D. L. (2017). An Examination of Diet for the Maintenance of Remission in Inflammatory Bowel Disease. Nutrients, 9(3), 259. https://doi.org/10.3390/nu9030259
5 Sandefur, K., Kahleova, H., Desmond, A. N., Elfrink, E., & Barnard, N. D. (2019). Crohn’s Disease Remission with a Plant-Based Diet: A Case Report. Nutrients, 11(6), 1385. https://doi.org/10.3390/nu11061385
6 Brown, A. C., Rampertab, S. D., & Mullin, G. E. (2011). Existing dietary guidelines for Crohn’s disease and ulcerative colitis. Expert review of gastroenterology & hepatology, 5(3), 411–425. https://doi.org/10.1586/egh.11.29
7 Wang, X., Guo, J., Liu, Y., Yu, H., & Qin, X. (2019). Sucralose Increased Susceptibility to Colitis in Rats. Inflammatory bowel diseases, 25(2), e3–e4. https://doi.org/10.1093/ibd/izy196
8 Rodriguez-Palacios, A., Harding, A., Menghini, P., Himmelman, C., Retuerto, M., Nickerson, K. P., Lam, M., Croniger, C. M., McLean, M. H., Durum, S. K., Pizarro, T. T., Ghannoum, M. A., Ilic, S., McDonald, C., & Cominelli, F. (2018). The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in
Crohn’s Disease-Like Ileitis. Inflammatory bowel diseases, 24(5), 1005–1020. https://doi.org/10.1093/ibd/izy060
9 Li, X., Liu, Y., Wang, Y., Li, X., Liu, X., Guo, M., Tan, Y., Qin, X., Wang, X., & Jiang, M. (2020). Sucralose Promotes Colitis-Associated Colorectal Cancer Risk in a Murine Model Along With Changes in Microbiota. Frontiers in oncology, 10, 710. https://doi.org/10.3389/fonc.2020.00710
10 Li, X., Liu, Y., Wang, Y., Li, X., Liu, X., Guo, M., Tan, Y., Qin, X., Wang, X., & Jiang, M. (2020). Sucralose Promotes Colitis-Associated Colorectal Cancer Risk in a Murine Model Along With Changes in Microbiota. Frontiers in oncology, 10, 710. https://doi.org/10.3389/fonc.2020.00710
11 Kawano, R., Okamura, T., Hashimoto, Y., Majima, S., Senmaru, T., Ushigome, E., Asano, M., Yamazaki, M., Takakuwa, H., Sasano, R., Nakanishi, N., Hamaguchi, M., & Fukui, M. (2021). Erythritol Ameliorates Small Intestinal Inflammation Induced by High-Fat Diets and Improves Glucose Tolerance. International journal of molecular sciences, 22(11), 5558. https://doi.org/10.3390/ijms22115558
12 Zhang, J., Chen, X., Yang, R., Ma, Q., Qi, W., Sanidad, K. Z., Park, Y., Kim, D., Decker, E. A., & Zhang, G. (2019). Thermally Processed Oil Exaggerates Colonic Inflammation and Colitis-Associated Colon Tumorigenesis in Mice. Cancer prevention research (Philadelphia, Pa.), 12(11), 741–750. https://doi.org/10.1158/1940-6207.CAPR-19-0226
13 Karban, A., & Eliakim, R. (2007). Effect of smoking on inflammatory bowel disease: Is it disease or organ specific?. World journal of gastroenterology, 13(15), 2150–2152. https://doi.org/10.3748/wjg.v13.i15.2150
14 Fletcher, J., Cooper, S. C., Ghosh, S., & Hewison, M. (2019). The Role of Vitamin D in Inflammatory Bowel Disease: Mechanism to Management. Nutrients, 11(5), 1019. https://doi.org/10.3390/nu11051019
15 Picardo, S., Altuwaijri, M., Devlin, S. M., & Seow, C. H. (2020). Complementary and alternative medications in the management of inflammatory bowel disease. Therapeutic advances in gastroenterology, 13, 1756284820927550. https://doi.
org/10.1177/1756284820927550
16 Mozaffari, H., Daneshzad, E., Larijani, B., Bellissimo, N., & Azadbakht, L. (2020). Dietary intake of fish, n-3 polyunsaturated fatty acids, and risk of inflammatory bowel disease: a systematic review and meta-analysis of observational studies. European journal of nutrition, 59(1), 1–17. https://doi.org/10.1007/s00394-019-01901-0
17 Tamboli, C. P., Neut, C., Desreumaux, P., & Colombel, J. F. (2004). Dysbiosis in inflammatory bowel disease. Gut, 53(1), 1–4. https://doi.org/10.1136/gut.53.1.1
18 Parian, A., & Limketkai, B. N. (2016). Dietary Supplement Therapies for Inflammatory Bowel Disease: Crohn’s Disease and Ulcerative Colitis. Current pharmaceutical design, 22(2), 180–188. https://doi.org/10.2174/1381612822666151112145033
19 Tang, X., Li, X., Wang, Y., Zhang, Z., Deng, A., Wang, W., Zhang, H., Qin, H., & Wu, L. (2020). Butyric Acid Increases the Therapeutic Effect of EHLJ7 on Ulcerative Colitis by Inhibiting JAK2/STAT3/SOCS1 Signaling Pathway. Frontiers in pharmacology, 10, 1553. https://doi.org/10.3389/fphar.2019.01553
20 Scheppach W. (1994). Effects of short chain fatty acids on gut morphology and function. Gut, 35(1 Suppl), S35–S38. https://doi.org/10.1136/gut.35.1_suppl.s35
21 Banasiewicz, T., Domagalska, D., Borycka-Kiciak, K., & Rydzewska, G. (2020). Determination of butyric acid dosage based on clinical and experimental studies - a literature review. Przeglad gastroenterologiczny, 15(2), 119–125. https://doi.org/10.5114/pg.2020.95556
22 Bangodi,N., et. al. (2021). Evaluation of Ulmus Fulva Extract in Experimentally Induced Inflammatory Bowel Disease in Rats. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 16(4), 1-7.
23 Langmead, L., Dawson, C., Hawkins, C., Banna, N., Loo, S., & Rampton, D. S. (2002). Antioxidant effects of herbal therapies used by patients with inflammatory bowel disease: an in vitro study. Alimentary pharmacology & therapeutics, 16(2), 197–205. https://doi.org/10.1046/j.1365-2036.2002.01157.x
24 Czigle, S., Bittner Fialová, S., Tóth, J., Mučaji, P., Nagy, M., & On Behalf Of The Oemonom (2022). Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules (Basel, Switzerland), 27(9), 2881. https://doi.org/10.3390/molecules27092881s
25 Bahrami, G., Malekshahi, H., Miraghaee, S., Madani, H., Babaei, A., Mohammadi, B., & Hatami, R. (2020). Protective and Therapeutic Effects of Aloe Vera Gel on Ulcerative Colitis Induced by Acetic Acid in Rats. Clinical nutrition research, 9(3), 223–234. https://doi.org/10.7762/cnr.2020.9.3.223
26 Langmead, L., Feakins, R. M., Goldthorpe, S., Holt, H., Tsironi, E., De Silva, A., Jewell, D.P., & Rampton, D. S. (2004). Randomized, double-blind, placebo-controlled trial of oral aloe vera gel for active ulcerative colitis. Alimentary pharmacology & therapeutics, 19(7), 739–747. https://doi.org/10.1111/j.1365-2036.2004.01902.x
27 Liu, D., Gao, L., Zhang, J., Huo, X., Ni, H., & Cao, L. (2017). Anti-inflammatory and Anti-oxidant Effects of Licorice Flavonoids on Ulcerative Colitis in Mouse Model. Chinese Herbal Medicines. 9(4), 358-368.
28 Qin, M., Geng, Y., Lu, Z., Xu, H., Shi, J. S., Xu, X., & Xu, Z. H. (2016). Anti-Inflammatory Effects of Ethanol Extract of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), in Mice with Ulcerative Colitis. International journal of medicinal mushrooms, 18(3), 227–234. https://doi.org/10.1615/IntJMedMushrooms.v18.i3.50
29 Wang, D., Zhang, Y., Yang, S., Zhao, D., & Wang, M. (2019). A polysaccharide from cultured mycelium of Hericium erinaceus relieves ulcerative colitis by counteracting oxidative stress and improving mitochondrial function. International journal of biological macromolecules, 125, 572–579. https://doi.org/10.1016/j.ijbiomac.2018.12.092
30 Ren, Y., Geng, Y., Du, Y., Li, W., Lu, Z. M., Xu, H. Y., Xu, G. H., Shi, J. S., & Xu, Z. H. (2018). Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. The Journal of nutritional biochemistry, 57, 67–76.
https://doi.org/10.1016/j.jnutbio.2018.03.005
31 Pallav, K., Dowd, S. E., Villafuerte, J., Yang, X., Kabbani, T., Hansen, J., Dennis, M., Leffler, D. A., Newburg, D. S., & Kelly, C. P. (2014). Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: a randomized clinical trial. Gut microbes, 5(4), 458–467. https://doi.org/10.4161/gmic.29558
32 Lim B. O. (2011). Coriolus versicolor suppresses inflammatory bowel disease by Inhibiting the expression of STAT1 and STAT6 associated with IFN-γ and IL-4 expression. Phytotherapy research: PTR, 25(8), 1257–1261. https://doi.org/10.1002/ptr.3378
33 Saleh, M. H., Rashedi, I., & Keating, A. (2017). Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Frontiers in immunology, 8, 1087. https://doi.org/10.3389/fimmu.2017.01087
34 Jin, M., Zhou, W., Jin, C., Jiang, Z., Diao, S., Jin, Z., & Li, G. (2019). Anti-inflammatory activities of the chemical constituents isolated from Trametes versicolor. Natural product research, 33(16), 2422–2425. https://doi.org/10.1080/14786419.2018.1446011
35 Xie, J., Liu, Y., Chen, B., Zhang, G., Ou, S., Luo, J., & Peng, X. (2019). Ganoderma lucidum polysaccharide improves rat DSS-induced colitis by altering cecal microbiota and gene expression of colonic epithelial cells. Food & nutrition research, 63, 10.29219/fnr.v63.1559. https://doi.org/10.29219/fnr.v63.1559
36 Liu, C., Dunkin, D., Lai, J., Song, Y., Ceballos, C., Benkov, K., & Li, X. M. (2015). Anti-inflammatory Effects of Ganoderma lucidum Triterpenoid in Human Crohn’s Disease Associated with Downregulation of NF-κB Signaling. Inflammatory bowel diseases, 21(8), 1918–1925. https://doi.org/10.1097/MIB.0000000000000439
37 Mawdsley, J. E., & Rampton, D. S. (2005). Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut, 54(10), 1481–1491. https://doi.org/10.1136/gut.2005.064261
38 Sajadieh, A., Nielsen, O. W., Rasmussen, V., Hein, H. O., Abedini, S., & Hansen, J. F. (2004). Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. European heart journal, 25(5), 363–370. https://doi.org/10.1016/j.ehj.2003.12.003
39 Danner, M., Kasl, S. V., Abramson, J. L., & Vaccarino, V. (2003). Association between depression and elevated C-reactive protein. Psychosomatic medicine, 65(3), 347–356. https://doi.org/10.1097/01.psy.0000041542.29808.01
40 Chandrasekhar, K., Kapoor, J., & Anishetty, S. (2012). A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian journal of psychological medicine, 34(3), 255–262. https://doi.org/10.4103/0253-7176.106022
41 Lopresti, A. L., Smith, S. J., Malvi, H., & Kodgule, R. (2019). An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine, 98(37), 320 e17186. https://doi.org/10.1097/MD.0000000000017186
42 Khan, M. A., Subramaneyaan, M., Arora, V. K., Banerjee, B. D., & Ahmed, R. S. (2015). Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. Journal of complementary & integrative medicine, 12(2), 117–125. https://doi.org/10.1515/jcim-2014-0075
43 Triantafillidis, J. K., Triantafyllidi, A., Vagianos, C., & Papalois, A. (2016). Favorable results from the use of herbal and plant products in inflammatory bowel disease: evidence from experimental animal studies. Annals of gastroenterology, 29(3), 268–281. https://doi.org/10.20524/aog.2016.0059
44 Chong, P. S., Fung, M. L., Wong, K. H., & Lim, L. W. (2019). Therapeutic Potential of Hericium erinaceus for Depressive Disorder. International journal of molecular sciences, 21(1), 163. https://doi.org/10.3390/ijms21010163
45 Liao, L. Y., He, Y. F., Li, L., Meng, H., Dong, Y. M., Yi, F., & Xiao, P. G. (2018). A preliminary review of studies on adaptogens: comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chinese medicine, 13, 57. https://doi.org/10.1186/s13020-018-0214-9
46 Shashidhar, M. G., Giridhar, P., Udaya Sankar, K., & Manohar, B. (2013). Bioactive principles from Cordyceps sinensis: A potent food supplement - A review. Journal of functional foods, 5(3), 1013–1030. https://doi.org/10.1016/j.jff.2013.04.018
47 Han, E. S., Oh, J. Y., & Park, H. J. (2011). Cordyceps militaris extract suppresses dextran sodium sulfate-induced acute colitis in mice and production of inflammatory mediators from macrophages and mast cells. Journal of ethnopharmacology, 134(3), 703–710. https://doi.org/10.1016/j.jep.2011.01.022
48 Roe, J. J., Thompson, C. W., Aspinall, P. A., Brewer, M. J., Duff, E. I., Miller, D., Mitchell, R., & Clow, A. (2013). Green space and stress: evidence from cortisol measures in deprived urban communities. International journal of environmental research and public health, 10(9), 4086–4103. https://doi.org/10.3390/ijerph10094086
49 Andersen, L., Corazon, S., & Stigsdotter, U. (2021). Nature Exposure and Its Effects on Immune System Functioning: A Systematic Review. International journal of environmental research and public health, 18(4), 1416. https://doi.org/10.3390/ijerph18041416


Ch. 11: Leaky Gut, Gastritis, and IBS Protocol

1 Cristofori, F., Dargenio, V. N., Dargenio, C., Miniello, V. L., Barone, M., & Francavilla, R. (2021). Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Frontiers in immunology, 12, 578386. https://doi.org/10.3389/fimmu.2021.578386 https://pubmed.ncbi.nlm.nih.gov/33717063/
2 https://pubmed.ncbi.nlm.nih.gov/29742432/
3 Cignarella F., Cantoni C., Ghezzi L., Salter A., Dorsett Y., Chen L., Phillips D., Weinstock G.M., Fontana L., Cross A.H., et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 2018;27:1222–1235. doi: 10.1016/j.cmet.2018.05.006.
4 Rangan P., Choi I., Wei M., Navarrete G., Guen E., Brandhorst S., Enyati N., Pasia G., Maesincee D., Ocon V., et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 2019;26:2704–2719. doi: 10.1016/j.celrep.2019.02.019.
5 Catterson J.H., Khericha M., Dyson M.C., Vincent A.J., Callard R., Haveron S.M., Rajasingam A., Ahmad M., Partridge L. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Curr. Biol. 2018;28:1714–1724. doi: 10.1016/j.cub.2018.04.015
6 Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019 Jul 16;11(7):1613. doi: 10.3390/nu11071613. PMID: 31315227; PMCID: PMC6682904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682904/
7 Jayachandran M, Xiao J, Xu B. A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. International Journal of Molecular Sciences. 2017; 18(9):1934. https://doi.org/10.3390/ijms18091934
8 Rebello CJ, O’Neil CE, Greenway FL. Dietary fiber and satiety: the effects of oats on satiety. Nutr Rev. 2016 Feb;74(2):131-47. doi: 10.1093/nutrit/nuv063. Epub 2016 Jan 2.PMID: 26724486; PMCID: PMC4757923.
9 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015): 1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.gov/26853960/)
10 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015): 1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.gov/26853960/)
11 Czigle, S., Bittner Fialová, S., Tóth, J., Mučaji, P., Nagy, M., & On Behalf of The Oemonom (2022). Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules (Basel, Switzerland), 27(9), 2881. https://doi.org/10.3390/molecules27092881
12 Hawrelak JA, Myers SP. Effects of two natural medicine formulations on irritable bowel syndrome symptoms: A pilot study. J Altern Complement Med 2010;16:1065–1071
13 Ke F, Yadav PK, Ju LZ. Herbal medicine in the treatment of ulcerative colitis. Saudi J Gastroenterol 2012;18:3–10
14 Available Chemical Constituents and Activities of Ganoderma Lucidum (Lingzhi or Red Reishi) Utilizing in Disease Treatment: A mini review. Vo et al. J Res Clin Med. 2021;9: 32. doi: 10.34172/jrcm.2021.032
15 Pallav, K., Dowd, S. E., Villafuerte, J., Yang, X., Kabbani, T., Hansen, J., Dennis, M., Leffler, D. A., Newburg, D. S., & Kelly, C. P. (2014). Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: a randomized clinical trial. Gut microbes, 5(4), 458–467. https://doi.org/10.4161/gmic.29558
https://pubmed.ncbi.nlm.nih.gov/25006989/
16 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015): 1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.gov/26853960/)
17 Fletcher, J., Cooper, S. C., Ghosh, S., & Hewison, M. (2019). The Role of Vitamin D in Inflammatory Bowel Disease: Mechanism to Management. Nutrients, 11(5), 1019. https://doi.org/10.3390/nu11051019
18 Rastgoo S, Ebrahimi-Daryani N, Agah S, Karimi S, Taher M, Rashidkhani B, Hejazi E, Mohseni F, Ahmadzadeh M, Sadeghi A, Hekmatdoost A. Glutamine Supplementation Enhances the Effects of a Low FODMAP Diet in Irritable Bowel Syndrome Management. Front Nutr. 2021 Dec 16;8:746703. doi: 10.3389/fnut.2021.746703. PMID: 34977110; PMCID: PMC8716871. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716871
19 Song W, Chen Q, Wang Y, Han Y, Zhang H, Li B. Identification and Structure-Activity Relationship of Intestinal Epithelial Barrier Function Protective Collagen Peptides from Alaska Pollock Skin. Mar Drugs. 2019 Jul 31;17(8):450. doi: 10.3390/md17080450. PMID: 31370332; PMCID: PMC6723256
20 Abrahams, M., O’Grady, R., & Prawitt, J. (2022). Effect of a Daily Collagen Peptide Supplement on Digestive Symptoms in Healthy Women: 2-Phase Mixed Methods Study. JMIR formative research, 6(5), e36339. https://doi.org/10.2196/36339


Ch. 12: Liver Health Protocol

1 https://www.cdc.gov/hepatitis/theliver.htm
2 https://www.hopkinsmedicine.org/health/conditions-and-diseases/liver-anatomy-and-functions
3 https://www.hopkinsmedicine.org/health/conditions-and-diseases/liver-anatomy-and-functions
4 https://www.mayoclinic.org/diseases-conditions/liver-problems/symptoms-causes/syc-20374502
5 Wang YP, Cheng ML, Zhang BF, Mu M, Wu J. Effects of blueberry on hepatic fibrosis and transcription factor Nrf2 in rats. World J Gastroenterol. 2010 Jun 7;16(21):2657-63. doi: 10.3748/wjg.v16.i21.2657. PMID: 20518088; PMCID: PMC2880779
6 Bingül İ, Başaran-Küçükgergin C, Aydın AF, Soluk-Tekkeşin M, Olgaç V, Doğru-Abbasoğlu S, Uysal M. Blueberry treatment attenuated cirrhotic and preneoplastic lesions and oxidative stress in the liver of diethylnitrosamine-treated rats. Int J Immunopathol Pharmacol. 2016 Sep;29(3):426-37. doi: 10.1177/0394632015621319. Epub 2015 Dec 18. PMID: 26684621; PMCID: PMC5806765
7 Yi, Weiguang & Akoh, Casimir & Fischer, Joan & Krewer, Gerard. (2006). Effects of phenolic compounds in blueberries and muscadine grapes on HepG2 cell viability and apoptosis. Food Research International - FOOD RES INT. 39. 628-638. 10.1016/j.foodres.2006.01.001
8 Chen YJ, Wallig MA, Jeffery EH. Dietary Broccoli Lessens Development of Fatty Liver and Liver Cancer in Mice Given Diethylnitrosamine and Fed a Western or Control Diet. J Nutr. 2016 Mar;146(3):542-50. doi: 10.3945/jn.115.228148. Epub 2016 Feb 10. PMID: 26865652; PMCID: PMC4763488
9 Chen BB, Han Y, Pan X, Yan J, Liu W, Li Y, Lin X, Xu S, Peng XE. Association between nut intake and non-alcoholic fatty liver disease risk: a retrospective case-control study in a sample of Chinese Han adults. BMJ Open. 2019 Sep 4;9(9): e028961. doi: 10.1136/bmjopen-2019-028961. PMID: 31488477; PMCID: PMC6731785
10 Lu W, Li S, Li J, Wang J, Zhang R, Zhou Y, Yin Q, Zheng Y, Wang F, Xia Y, Chen K, Liu T, Lu J, Zhou Y, Guo C. Effects of Omega-3 Fatty Acid in Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Gastroenterol Res Pract. 2016;2016:1459790. doi:
10.1155/2016/1459790. Epub 2016 Aug 29. PMID: 27651787; PMCID: PMC5019889
11 Spooner MH, Jump DB. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: where do we stand? Curr Opin Clin Nutr Metab Care. 2019 Mar;22(2):103-110. doi: 10.1097/MCO.0000000000000539. PMID: 30601174; PMCID: PMC6355343
12 Zamani, H., de Joode, M., Hossein, I. J., Henckens, N., Guggeis, M. A., Berends, J. E., de Kok, T., & van Breda, S. (2021). The benefits and risks of beetroot juice consumption: a systematic review. Critical reviews in food science and nutrition, 61(5), 788–804. https://doi.org/10.1080/10408398.2020.1746629 https://pubmed.ncbi.nlm.nih.gov/32292042/
13 Chen, L., Zhu, Y., Hu, Z., Wu, S., & Jin, C. (2021). Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food science & nutrition, 9(11), 6406–6420. https://doi.org/10.1002/fsn3.2577 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565237/
14 Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822. https://doi.org/10.3390/nu7042801 ncbi.nlm.nih.gov/pmc/articles/PMC4425174
15 Khoshbaten M, Aliasgarzadeh A, Masnadi K, Farhang S, Tarzamani MK, Babaei H, Kiani J, Zaare M, Najafipoor F. Grape seed extract to improve liver function in patients with nonalcoholic fatty liver change. Saudi J Gastroenterol. 2010 Jul-Sep;16(3):194-7. doi: 10.4103/1319-3767.65197. PMID: 20616415; PMCID: PMC3003214
16 Pezeshki A, Safi S, Feizi A, Askari G, Karami F. The Effect of Green Tea Extract Supplementation on Liver Enzymes in Patients with Nonalcoholic Fatty Liver Disease. Int J Prev Med. 2016 Feb 1;7:28. doi: 10.4103/2008-7802.173051. PMID: 26955458; PMCID: PMC4763469
17 Yin X, Yang J, Li T, Song L, Han T, Yang M, Liao H, He J, Zhong X. The effect of 321 green tea intake on risk of liver disease: a meta analysis. Int J Clin Exp Med. 2015 Jun 15;8(6):8339-46. PMID: 26309486; PMCID: PMC4538013
18 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529263
19 Palumbo, B., Efthimiou, Y., Stamatopoulos, J., Oguogho, A., Budinsky, A., Palumbo, R., & Sinzinger, H. (2003). Prickly pear induces upregulation of liver LDL binding in familial heterozygous hypercholesterolemia. Nuclear medicine review. Central & Eastern Europe, 6(1), 35–39
20 https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC5174149/
21 https://www.webmd.com/hepatitis/toxic-liver-disease
22 https://www.allcareservices.ca/health-effects-of-cleaning-with-aerosol-sprays/
23 https://pubmed.ncbi.nlm.nih.gov/28913736
24 https://www.theguardian.com/fashion/2021/jun/15/pfas-makeup-forever-chemicals
25 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068600/
26 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651828
27 https://www.ethicalconsumer.org/health-beauty/toxic-beauty
28 https://www.sciencedirect.com/science/article/abs/pii/S00489697163134
29 Soares, A. A., de Sá-Nakanishi, A. B., Bracht, A., da Costa, S. M., Koehnlein, E. A., de Souza, C. G., & Peralta, R. M. (2013). Hepatoprotective effects of mushrooms. Molecules (Basel, Switzerland), 18(7), 7609–7630. https://doi.org/10.3390/molecules18077609
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270077
30 Wasser S.P. Reishi or Ling Zhi (Ganoderma lucidum) Enc. Diet.Suppl. 2005;2005:603–
31 Soares, A. A., de Sá-Nakanishi, A. B., Bracht, A., da Costa, S. M., Koehnlein, E. A., de Souza, C. G., & Peralta, R. M. (2013). Hepatoprotective effects of mushrooms. Molecules (Basel, Switzerland), 18(7), 7609–7630. https://doi.org/10.3390/molecules18077609
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270077/
32 Lin, Z. B., Wang, M. Y., Liu, Q., & Che, Q. M. (2002). Effects of total triterpenoids extract from Ganoderma Iucidum (Curt.: Fr.) P. Karst. (Reishi Mushroom) on experimental liver injury models induced by carbon tetrachloride or D-galactosamine in mice. International Journal of Medicinal Mushrooms, 4(4).
33 https://www.researchgate.net/publication/281815032
34 https://pubmed.ncbi.nlm.nih.gov/26141646/
35 Mahboubi M, Mahboubi M. Hepatoprotection by dandelion (Taraxacum officinale) and mechanisms. Asian Pac J Trop Biomed 2020;10:1-10
36 Hamza, A.A., Mohamed, M.G., Lashin, F.M. et al. Dandelion prevents liver fibrosis, inflammatory response, and oxidative stress in rats. JoBAZ 81, 43 (2020). https://doi.org/10.1186/s41936-020-00177-9
37 Abenavoli, L., Capasso, R., Milic, N., & Capasso, F. (2010). Milk thistle in liver diseases: past, present, future. Phytotherapy research: PTR, 24(10), 1423–1432. https://doi.org/10.1002/ptr.320 https://pubmed.ncbi.nlm.nih.gov/20564545/
38 Hackett, E. S., Twedt, D. C., & Gustafson, D. L. (2013). Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. Journal of veterinary internal medicine, 27(1), 10–16. https://doi.org/10.1111/jvim.12002
39 Arturo Alejandro Dreifuss, Amanda Leite Bastos-Pereira, Thiago Vinicius Ávila, Bruna da Silva Soley, Armando J. Rivero, José Luis Aguilar, Alexandra Acco, Antitumoral and antioxidant effects of a hydroalcoholic extract of cat’s claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model, Journal of Ethnopharmacology,
Volume 130, Issue 1, 2010, Pages 127-133, ISSN 0378-8741, https://doi.org/10.1016/j.jep.2010.04.029
40 Elgawish, R. A., Abdelrazek, H., Ismail, S., Loutfy, N. M., & Soliman, M. (2019). Hepatoprotective activity of Uncaria tomentosa extract against sub-chronic exposure to fipronil in male rats. Environmental science and pollution research international, 26(1),199–207. https://doi.org/10.1007/s11356-018-3615-5
41 Ma L, Song J, Shi Y, Wang C, Chen B, Xie D, Jia X. Anti-Hepatitis B Virus Activity of Chickweed [Stellaria media (L.) Vill.] Extracts in HepG2.2.15 Cells. Molecules. 2012; 17(7):8633-8646. https://doi.org/10.3390/molecules17078633
42 https://ods.od.nih.gov/factsheets/vitamind-healthprofessional/
43 Iruzubieta P, Terán Á, Crespo J, Fábrega E. Vitamin D deficiency in chronic liver disease. World J Hepatol. 2014 Dec 27;6(12):901-15. doi: 10.4254/wjh.v6.i12.901. PMID: 25544877; PMCID: PMC4269909
44 Stokes, C. S., Volmer, D. A., Grünhage, F., & Lammert, F. (2013). Vitamin D in chronic liver disease. Liver international: official journal of the International Association for the Study of the Liver, 33(3), 338–352. https://doi.org/10.1111/liv.12106
45 https://www.livestrong.com/article/359556-risks-of-too-much-vitamin-b12/
46 Yan X, Gao R, Hu Y, Jin J. Pernicious anemia associated with cryptogenic cirrhosis: Two case reports and a literature review. Medicine (Baltimore). 2018 Sep;97(39): e12547. doi: 10.1097/MD.0000000000012547. PMID: 30278550; PMCID:
PMC6181571
47 El Hadi H, Vettor R, Rossato M. Vitamin E as a Treatment for Nonalcoholic Fatty Liver Disease: Reality or Myth? Antioxidants (Basel). 2018 Jan 16;7(1):12. doi: 10.3390/antiox7010012. PMID: 29337849; PMCID: PMC5789322
48 He, Z., Li, X., Yang, H., Wu, P., Wang, S., Cao, D., Guo, X., Xu, Z., Gao, J., Zhang, W., & Luo, X. (2021). Effects of Oral Vitamin C Supplementation on Liver Health and Associated Parameters in Patients With Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in nutrition, 8, 745609. https://doi.org/10.3389/fnut.2021.745609
49 El Hadi H, Vettor R, Rossato M. Vitamin E as a Treatment for Nonalcoholic Fatty Liver Disease: Reality or Myth? Antioxidants (Basel). 2018 Jan 16;7(1):12. doi: 10.3390/antiox7010012. PMID: 29337849; PMCID: PMC5789322
50 https://ods.od.nih.gov/factsheets/Vitaminc-Healthprofessional/
51 https://my.clevelandclinic.org/health/diseases/15831-fatty-liver-disease
52 https://www.health.harvard.edu/blog/fatty-liver-disease-what-it-is-and-what-todo-about-it-2019011015746
53 https://medlineplus.gov/cholesterol.html
54 https://thefhfoundation.org/liver-cholesterol
55 Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016 Mar 11;48(3): e219. doi: 10.1038/emm.2016.6. PMID: 26964835; PMCID:PMC4892884
56 McDougall, G. J., Kulkarni, N. N., & Stewart, D. (2008). Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. BioFactors (Oxford, England), 34(1), 73–80. https://doi.org/10.1002/biof.5520340108
57 Li, Y., Talbot, C.L., Chandravanshi, B. et al. Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis. Sci Rep 12, 7273 (2022). https://doi.org/10.1038/s41598-022-11219-3
58 Cheng, Y. W., Chen, Y. I., Tzeng, C. Y., Chen, H. C., Tsai, C. C., Lee, Y. C., Lin, J. G., Lai, Y.K., & Chang, S. L. (2012). Extracts of Cordyceps militaris lower blood glucose via the stimulation of cholinergic activation and insulin secretion in normal rats. Phytotherapy research: PTR, 26(8), 1173–1177. https://doi.org/10.1002/ptr.3709
59 Ma H.-T., Hsieh J.-F., Chen S.-T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry. 2015;114:109–113. doi: 10.1016/j.phytochem.2015.02.017
60 Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. J Ethnopharmacol. 2017;196:47-57
61 Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. J Ethnopharmacol. 2017;196:47-57
62 Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. J Ethnopharmacol. 2017;196:47-57
63 https://pubmed.ncbi.nlm.nih.gov/25790910/
64 https://pubmed.ncbi.nlm.nih.gov/19839001/
65 Tassell, M. C., Kingston, R., Gilroy, D., Lehane, M., & Furey, A. (2010). Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacognosy reviews, 4(7), 32–41. https://doi.org/10.4103/0973-7847.65324 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249900/
66 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376420/
67 https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC3210006
68 https://pubmed.ncbi.nlm.nih.gov/24199995/
69 https://www.mayoclinic.org/tests-procedures/liver-function-tests/about/pac-20394595
70 https://www.drugs.com/condition/liver-disease.html


Ch. 13: Ulcer Protocol

1 https://www.ncbi.nlm.nih.gov/books/NBK537128/
2 https://www.healthdirect.gov.au/duodenal-ulcer
3 https://www.mayoclinic.org/diseases-conditions/peptic-ulcer/diagnosis-treatment/drc-20354229
4 https://www.niddk.nih.gov/health-information/digestive-diseases/peptic-ulcers-stomach-ulcers/symptoms-causes
5 https://www.niddk.nih.gov/health-information/digestive-diseases/peptic-ulcers-stomach-ulcers/symptoms-causes
6 https://pubmed.ncbi.nlm.nih.gov/2072799/
7 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458761/
8 https://pubmed.ncbi.nlm.nih.gov/33050668/
9 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758027/
10 https://t.ly/RNCp
11 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906699/
12 https://www.advresearch.org/
13 https://www.ncbi.nlm.nih.gov/books/NBK564659/
14 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958626/
15 https://pubmed.ncbi.nlm.nih.gov/25111233/
16 https://pubmed.ncbi.nlm.nih.gov/27995346/
17 https://pubmed.ncbi.nlm.nih.gov/22933142/
18 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103537/
19 Zaghlool SS, Abo-Seif AA, Rabeh MA, Abdelmohsen UR, Messiha BAS. Gastro-Protective and Anti-Oxidant Potential of Althaea officinalis and Solanum nigrum on Pyloric Ligation/Indomethacin-Induced Ulceration in Rats. Antioxidants (Basel). 2019 Oct 25;8(11):512. doi: 10.3390/antiox8110512. PMID: 31731465; PMCID: PMC6912529
20 Zaghlool SS, Shehata BA, Abo-Seif AA, Abd El-Latif HA. Protective effects of ginger and marshmallow extracts on indomethacin-induced peptic ulcer in rats. J Nat Sci Biol Med. 2015 Jul-Dec;6(2):421-8. doi: 10.4103/0976-9668.160026. PMID: 26283843; PMCID: PMC4518423322 21 Adom, M. B., Taher, M., Mutalabisin, M. F., Amri, M. S., Kudos, M. B. A., Sulaiman, M. W. A. W., ... & Susanti, D. (2017). Chemical constituents and medical benefits of Plantago major. Biomedicine & pharmacotherapy, 96, 348-360
22 Setright, R. (2017). Prevention of symptoms of gastric irritation (GERD) using two herbal formulas: An observational study. Journal of the Australian Traditional-Medicine Society, 23(2), 68–71. https://search.informit.org/doi/10.3316/informit.
950298610899394
23 Yadav, A. K., Pushpesh, K. M., Jain, P. K., Chandana, V. R., Tiwari, S., & Singh, V. (2016). Investigation of Calendula officinalis whole plant as a gastroprotective and antioxidant in peptic ulcer. Br J Med Health Res, 3(7), 67-76
24 Dizaye, K., & Ali, R. H. (2012). Gastroprotective effects of calendula officinalis extract. Impact of a health educational program on knowledge of female nursing staff and students regarding breast Cancer prevention and early detection in Erbil city, 88
25 Zaghlool SS, Shehata BA, Abo-Seif AA, Abd El-Latif HA. Protective effects of ginger and marshmallow extracts on indomethacin-induced peptic ulcer in rats. J Nat Sci Biol Med. 2015 Jul-Dec;6(2):421-8. doi: 10.4103/0976-9668.160026. PMID: 26283843; PMCID: PMC4518423
26 https://pubmed.ncbi.nlm.nih.gov/23612703/
27 Świąder, K., Startek, K., & Wijaya, C. H. (2019). The therapeutic properties of Lemon balm (Melissa officinalis L.): Reviewing novel findings and medical indications. J. Appl. Bot. Food Qual, 92, 327-335
28 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836258/
29 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615700/
30 https://pubmed.ncbi.nlm.nih.gov/19879118/
31 Ardalani, H., Hadipanah, A., & Sahebkar, A. (2020). Medicinal Plants in the Treatment of Peptic Ulcer Disease: A Review. Mini reviews in medicinal chemistry, 20(8), 662–702. https://doi.org/10.2174/1389557520666191227151939
32 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015): 1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.gov/26853960/)
33 https://t.ly/lND2
34 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906699/
35 https://pubmed.ncbi.nlm.nih.gov/8309988/
36 https://pubmed.ncbi.nlm.nih.gov/8726273/
37 https://pubmed.ncbi.nlm.nih.gov/3047853/
38 https://pubmed.ncbi.nlm.nih.gov/27656478/
39 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249666
40 https://newsnetwork.mayoclinic.org/discussion/mayo-clinic-q-and-a-treatingyour-peptic-ulcer/


Ch. 14: Adrenal Fatigue Protocol

1 Adrenal Insufficiency. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-2017 Oct 14.
2 Stephens, M. A., & Wand, G. (2012). Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol research: current reviews, 34(4), 468–483
3 Jameson, D. (2016) Persistent Burnout Theory of Chronic Fatigue Syndrome. Neuroscience and Medicine, 7, 66-73. doi: 10.4236/nm.2016.72008
4 Kamani Liyanarachchi, Richard Ross, Miguel Debono, Human Studies on Hypothalamo-Pituitary-Adrenal (HPA) Axis, Best Practice & Research Clinical Endocrinology & Metabolism, Volume 31, Issue 5, 2017, Pages 459-473, ISSN 1521-690X, https://doi.org/10.1016/j.beem.2017.10.011
5 Neary, N., & Nieman, L. (2010). Adrenal insufficiency: etiology, diagnosis and treatment. Current opinion in endocrinology, diabetes, and obesity, 17(3), 217–223. https://doi.org/10.1097/MED.0b013e328338f608
6 Bentham Science Publishers. (2015, November 11). Early Life Stress in Depressive Patients: Role of Glucocorticoid. https://www.ingentaconnect.com/content/ben/cpd/2015/00000021/00000011/art00003
7 Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016 Feb;101(2):364–89
8 Burfeind, K. G., Yadav, V., & Marks, D. L. (2016). Hypothalamic Dysfunction and Multiple Sclerosis: Implications for Fatigue and Weight Dysregulation. Current neurology and neuroscience reports, 16(11), 98. https://doi.org/10.1007/s11910-016-0700-3
9 Liao, L. Y., He, Y. F., Li, L., Meng, H., Dong, Y. M., Yi, F., & Xiao, P. G. (2018). A preliminary review of studies on adaptogens: comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chinese medicine, 13, 57. https://doi.org/10.1186/s13020-018-0214-9
10 Head, K. A., & Kelly, G. S. (2009). Nutrients and botanicals for treatment of stress: adrenal fatigue, neurotransmitter imbalance, anxiety, and restless sleep. Alternative medicine review: a journal of clinical therapeutic, 14(2), 114–140
11 Kalani, A., Bahtiyar, G., & Sacerdote, A. (2012). Ashwagandha root in the treatment of non-classical adrenal hyperplasia. BMJ case reports, 2012, bcr2012006989. https://doi.org/10.1136/bcr-2012-006989
12 Wachtel-Galor, S., Yuen, J., Buswell, J. A., & Benzie, I. (2011). Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In I. Benzie (Eds.) et. al., Herbal Medicine: Biomolecular and Clinical Aspects. (2nd ed.). CRC Press/Taylor & Francis
13 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.v15.i6.30
14 Ji, D. B., Ye, J., Li, C. L., Wang, Y. H., Zhao, J., & Cai, S. Q. (2009). Antiaging effect of Cordyceps sinensis extract. Phytotherapy research: PTR, 23(1), 116–122. https://doi.org/10.1002/ptr.2576
15 Irfan, M., Kwak, Y. S., Han, C. K., Hyun, S. H., & Rhee, M. H. (2020). Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. Journal of ginseng research, 44(4), 538–543. https://doi.org/10.1016/j.jgr.2020.03.001
16 Al-Dujaili, E. A., Kenyon, C. J., Nicol, M. R., & Mason, J. I. (2011). Liquorice and glycyrrhetinic acid increase DHEA and deoxycorticosterone levels in vivo and in vitro by inhibiting adrenal SULT2A1 activity. Molecular and cellular endocrinology, 336(1-2), 102–109. https://doi.org/10.1016/j.mce.2010.12.011
17 Li, G., Ma, X., Deng, L., Zhao, X., Wei, Y., Gao, Z., Jia, J., Xu, J., & Sun, C. (2015). Fresh Garlic Extract Enhances the Antimicrobial Activities of Antibiotics on Resistant Strains in Vitro. Jundishapur journal of microbiology, 8(5), e14814. https://doi.org/10.5812/jjm.14814
18 Mandal, M. D., & Mandal, S. (2011). Honey: its medicinal property and antibacterial activity. Asian Pacific journal of tropical biomedicine, 1(2), 154–160. https://doi.org/10.1016/S2221-1691(11)60016-6
19 Sienkiewicz, M., Wasiela, M., & Głowacka, A. (2012). Aktywność przeciwbakteryjna olejku oreganowego (Origanum heracleoticum L.) wobec szczepów klinicznych Escherichia coli i Pseudomonas aeruginosa [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa]. Medycyna doswiadczalna i mikrobiologia, 64(4), 297–307
20 Sepahvand, A., Studzińska-Sroka, E., Ramak, P., & Karimian, V. (2021). Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. Journal of ethnopharmacology, 268, 113656. https://doi.org/10.1016/j.jep.2020.113656
21 Turker, A. U., & Gurel, E. (2005). Common mullein (Verbascum thapsus L.): recent advances in research. Phytotherapy research: PTR, 19(9), 733–739. https://doi.org/10.1002/ptr.1653
22 Young, L. M., Pipingas, A., White, D. J., Gauci, S., & Scholey, A. (2019). A Systematic Review and Meta-Analysis of B Vitamin Supplementation on Depressive Symptoms, Anxiety, and Stress: Effects on Healthy and ‘At-Risk’ Individuals. Nutrients, 11(9), 2232. https://doi.org/10.3390/nu11092232
23 Voĭtsekhovskaia, I., Orlikov, G. A., Voskresenskaia, N., Umnova, L. M., Ivanov, I. V., Gredzena, P., Karpov, I., Ianovskaia, I. a., Voĭtsekhovskiĭ, V. V., & Maulinysh, E. (2013). Terapevticheskii arkhiv, 85(10), 76–78
24 J Delarue, O Matzinger, C Binnert, P Schneiter, R Chioléro, L Tappy, Fish oil prevents the adrenal activation elicited by mental stress in healthy men, Diabetes & Metabolism, Volume 29, Issue 3, 2003, Pages 289-295, ISSN 1262-3636, https://doi.org/10.1016/
S1262-3636(07)70039-3
25 Muscogiuri, G., Altieri, B., Penna-Martinez, M., & Badenhoop, K. (2015). Focus on vitamin D and the adrenal gland. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 47(4), 239–246. https://doi.org/10.1055/s-0034-1396893
26 Das, D., Sen, C., & Goswami, A. (2016). Effect of Vitamin C on adrenal suppression by etomidate induction in patients undergoing cardiac surgery: A randomized controlled trial. Annals of cardiac anaesthesia, 19(3), 410–417. https://doi.org/10.4103/0971-9784.185522
27 Boyle, N. B., Lawton, C., & Dye, L. (2017). The Effects of Magnesium Supplementation on Subjective Anxiety and Stress-A Systematic Review. Nutrients, 9(5), 429. https://doi.org/10.3390/nu9050429
28 Cater R. E., 2nd (1995). Chronic intestinal candidiasis as a possible etiological factor in the chronic fatigue syndrome. Medical hypotheses, 44(6), 507–515. https://doi.org/10.1016/0306-9877(95)90515-4
29 Endocrine Testing Protocols: Hypothalamic Pituitary Adrenal Axis. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000- 2017 May 17


Ch. 15: Diabetes Type 2 Protocol

1 Sarris, J., & Wardle, J. (2014). Clinical naturopathy (2nd ed.). Australia: Elsevier
2 Jiang, S., Young, J. L., Wang, K., Qian, Y., & Cai, L. (2020). Diabetic induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Molecular medicine reports, 22(2), 603–611. https://doi.org/10.3892/mmr.2020.11175
3 Sarris, J., & Wardle, J. (2014). Clinical naturopathy (2nd ed.). Australia: Elsevier
4 Goldenberg, J. Z., Day, A., Brinkworth, G. D., Sato, J., Yamada, S., Jönsson, T., Beardsley, J., Johnson, J. A., Thabane, L., &amp; Johnston, B. C. (2021). Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: Systematic review and meta-analysis of published and unpublished Randomized Trial Data. BMJ, m4743. https://
doi.org/10.1136/bmj.m4743
5 Malaeb, S., Bakker, C., Chow, L. S., & Bantle, A. E. (2019). High-Protein Diets for Treatment of Type 2 Diabetes Mellitus: A Systematic Review. Advances in nutrition (Bethesda, Md.), 10(4), 621–633. https://doi.org/10.1093/advances/nmz002
6 Sarris, J., & Wardle, J. (2014). Clinical naturopathy (2nd ed.). Australia: Elsevier
7 Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M. I., Corella, D., Arós, F., Gómez-Gracia, E., Ruiz-Gutiérrez, V., Fiol, M., Lapetra, J., Lamuela-Raventos, R.323 M., Serra-Majem, L., Pintó, X., Basora, J., Muñoz, M. A., Sorlí, J. V., Martínez, J. A., Fitó, M., Gea, A., Hernán, M. A., … PREDIMED Study Investigators (2018). Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. The New England journal of medicine, 378(25), e34. https://doi.org/10.1056/NEJMoa1800389
8 Mani, U. V., Mani, I., Biswas, M., & Kumar, S. N. (2011). An open-label study on the effect of flax seed powder (Linum usitatissimum) supplementation in the management of diabetes mellitus. Journal of Dietary Supplements, 8(3), 257–265. https://doi.org/10.3109/19390211.2011.593615
9 Johnston, C. S., Kim, C. M., & Buller, A. J. (2004). Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care, 27(1), 281-282. doi:10.2337/diacare.27.1.281
10 Helland, A., Bratlie, M., Hagen, I., Mjøs, S., Sørnes, S., Ingvar Halstensen, A., Gudbrandsen, O. (2017). High intake of fatty fish, but not of lean fish, improved postprandial glucose regulation and increased the n-3 PUFA content in the leucocyte membrane in healthy overweight adults: A randomised trial. British Journal of Nutrition, 117(10),
1368-1378. doi:10.1017/S0007114517001234
11 https://lavierebelle.org/IMG/pdf/a_review_on_diabetes_and_okra_abelmoschus_esculentus_.pdf Dubey, P., & Mishra, S. (2017). A review on: Diabetes and okra (Abelmoschus esculentus). J. Med. Plants Stud, 5(3), 23-26
12 https://www.tandfonline.com/doi/abs/10.1080/14786419.2019.1637874 Daliu, P., Annunziata, G., Tenore, G. C., & Santini, A. (2020). Abscisic acid identification in Okra, Abelmoschus esculentus L. (Moench): Perspective nutraceutical use for the treatment of diabetes. Natural product research, 34(1), 3-9
13 Sikalidis, A. K., & Maykish, A. (2020). The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines, 8(1), 8. https://doi.org/10.3390/biomedicines8010008
14 Qin, J., Li, Y., Cai, Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). https://doi.org/10.1038/nature11450
15 Lee, H., & Ko, G. (2014). Effect of metformin on metabolic improvement and gut microbiota. Applied and environmental microbiology, 80(19), 5935–5943. https://doi.org/10.1128/AEM.01357-14
16 Chen, Z., Radjabzadeh, D., Chen, L., Kurilshikov, A., Kavousi, M., & Ahmadizar, F. et al. (2021). Association of Insulin Resistance and Type 2 Diabetes with Gut Microbial Diversity. JAMA Network Open, 4(7), e2118811. doi:10.1001/jamanetworkopen.2021.18811
17 Koutnikova, H., Genser, B., Monteiro-Sepulveda, M., Faurie, J. M., Rizkalla, S., Schrezenmeir, J., & Clément, K. (2019). Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ open, 9(3), e017995. https://doi.org/10.1136/
bmjopen-2017-017995
18 Colberg, S., Sigal, R., Yardley, J., Riddell, M., Dunstan, D., & Dempsey, P. et al. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065-2079. doi: 10.2337/dc16-1728
19 Mishra, A., Podder, V., Modgil, S., Khosla, R., Anand, A., Nagarathna, R., Malhotra, R., & Nagendra, H. R. (2020). Higher Perceived Stress and Poor Glycemic Changes in Prediabetics and Diabetics Among Indian Population. Journal of medicine and life, 13(2),132–137. https://doi.org/10.25122/jml-2019-0055
20 Ahola, A. J., Mutter, S., Forsblom, C., Harjutsalo, V., & Groop, P. H. (2019). Meal timing, meal frequency, and breakfast skipping in adult individuals with type 1 diabetes - associations with glycaemic control. Scientific reports, 9(1), 20063
21 Diane, A., Mahmoud, N., Bensmail, I., Khattab, N., Abunada, H. A., & Dehbi, M. (2020). Alpha lipoic acid attenuates ER stress and improves glucose uptake through DNAJB3 cochaperone. Scientific reports, 10(1), 1-15
22 Rochette, L., Ghibu, S., Muresan, A., & Vergely, C. (2015). Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Canadian journal of physiology and pharmacology, 93(12), 1021-1027
23 Jacob, S., Ruus, P., Hermann, R., Tritschler, H. J., Maerker, E., Renn, W., ... & Rett, K. (1999). Oral administration of RAC-α-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. Free Radical Biology and Medicine, 27(3-4), 309-314
24 Laquale, Kathleen M. (2006). B-complex vitamins’ role in energy release. In Movement Arts, Health Promotion and Leisure StudiesFaculty Publications. Paper25. http://vc.bridgew.edu/mahpls_fac/25
25 Pácal, L., Kuricová, K., & Kaňková, K. (2014). Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation?. World journal of diabetes, 5(3), 288–295. https://doi.org/10.4239/wjd.v5.i3.288
26 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
27 Anderson RA: Chromium, glucose intolerance and diabetes. J Am Col Nutr 17:548–555, 1998 Mertz W: Interaction of chromium with insulin: a progress report. Nutr Rev 56:174–177, 1998
28 Hechtman, L. (2012). Advanced clinical naturopathic medicine. NSW, Australia: Elsevier
29 Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L. Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients. 2018 Mar 14;10(3):350. doi:10.3390/nu10030350. PMID: 29538286; PMCID: PMC5872768. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872768/
30 Pitocco, D., Martini, F., Zaccardi, F., & Ghirlanda, G. (2012). Antioxidants, Healthy Diet, and Diabetes. Nutritional And Therapeutic Interventions for Diabetes and Metabolic Syndrome, 299-313. doi: 10.1016/b978-0-12-385083-
6.00024-3
31 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
32 Ranasinghe, P., Pigera, S., Galappatthy, P., Katulanda, P., & Constantine, G. R. (2015). Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. Daru: journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 23(1), 44. https://doi.org/10.1186/s40199-015-0127-4
33 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
34 Udayakumar, R., Kasthurirengan, S., Mariashibu, T. S., Rajesh, M., Anbazhagan, V. R., Kim, S. C., Ganapathi, A., & Choi, C. W. (2009). Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. International journal of molecular sciences, 10(5), 2367–2382. https://doi.org/10.3390/ijms10052367
35 Hechtman, L. (2012). Advanced clinical naturopathic medicine. NSW, Australia: Elsevier
36 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
37 Dong, H., Wang, N., Zhao, L., & Lu, F. (2012). Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evidence-based complementary and alternative medicine, 2012
38 Yin, J., Ye, J., & Jia, W. (2012). Effects and mechanisms of berberine in diabetes treatment. Acta Pharmaceutica Sinica B, 2(4), 327-334. doi: 10.1016/j.apsb.2012.06.003
39 Dong, H., Wang, N., Zhao, L., & Lu, F. (2012). Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evidence-based complementary and alternative medicine: eCAM, 2012, 591654. https://doi.org/10.1155/2012/591654
40 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
41 Joseph, B., & Jini, D. (2013). Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease, 3(2), 93–102. https://doi.org/10.1016/S2222-1808(13)60052-3
42 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
43 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
44 https://www.sciencedirect.com/topics/medicine-and-dentistry/insulin-sensitivity
45 Anderson, R. A., Zhan, Z., Luo, R., Guo, X., Guo, Q., Zhou, J., ... & Stoecker, B. J. (2016). Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. Journal of traditional and complementary medicine, 6(4), 332-336
46 https://www.sciencedirect.com/topics/medicine-and-dentistry/low-density-lipoprotein-cholesterol
47 Shang, C., Lin, H., Fang, X., Wang, Y., Jiang, Z., Qu, Y., ... & Cui, X. (2021). Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food & Function
48 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
49 Yu SH, Chen SY, Li WS, Dubey NK, Chen WH, Chuu JJ, Leu SJ, Deng WP. Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice. J Diabetes Res. 2015;2015:723190. doi: 10.1155/2015/723190. Epub 2015 Jul 16. Erratum in: J Diabetes Res. 2017;2017:7947401. PMID: 26258146; PMCID: PMC4519550
50 Lo, H. C., Tu, S. T., Lin, K. C., & Lin, S. C. (2004). The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life sciences, 74(23), 2897–2908. https://doi.org/10.1016/j.lfs.2003.11.003
51 Liu, C., Song, J., Teng, M., Zheng, X., Li, X., Tian, Y., Pan, M., Li, Y., Lee, R. J., & Wang, D. (2016). Antidiabetic and Antinephritic Activities of Aqueous Extract of Cordyceps militaris Fruit Body in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. Oxidative medicine and cellular longevity, 2016, 9685257. https://doi.org/10.1155/2016/9685257
52 Yu SH, Chen SY, Li WS, Dubey NK, Chen WH, Chuu JJ, Leu SJ, Deng WP. Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice. J Diabetes Res. 2015;2015:723190. doi: 10.1155/2015/723190. Epub 2015 Jul 16. Erratum in: J Diabetes Res. 2017;2017:7947401. PMID: 26258146; PMCID: PMC4519550
53 Guo, P., Kai, Q., Gao, J., Lian, Z. Q., Wu, C. M., Wu, C. A., & Zhu, H. B. (2010). Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of pharmacological sciences, 113(4), 395–403. https://doi.org/10.1254/jphs.10041fp https://pubmed.ncbi.nlm.nih.gov/20724804/
54 Zhang, H. W., Lin, Z. X., Tung, Y. S., Kwan, T. H., Mok, C. K., Leung, C., & Chan, L. S.(2014). Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease. The Cochrane database of systematic reviews, (12), CD008353. https://doi.org/10.1002/14651858.CD008353.pub2
55 Shin, S., Lee, S., Kwon, J., Moon, S., Lee, S., Lee, C. K., Cho, K., Ha, N. J., & Kim, K. (2009). Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages. Immune network, 9(3), 98–105. https://doi.org/10.4110/in.2009.9.3.98
56 Tiwari P., Mishra B. N., Sangwan N. S. (2014). Phytochemical and pharmacological properties of Gymnema sylvestre: An important medicinal plant. Biomed. Res. Int. 2014, 1–18. 10.1155/2014/830285324 57 Khan F, Sarker MMR, Ming LC, Mohamed IN, Zhao C, Sheikh BY, Tsong HF, Rashid MA. Comprehensive Review on Phytochemicals, Pharmacological and Clinical Potentials of Gymnema sylvestre. Front Pharmacol. 2019 Oct 29;10:1223. doi: 10.3389/fphar.2019.01223. PMID: 31736747; PMCID: PMC6830388
58 Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights. 2016 Jul 3;11:95-104. doi: 10.4137/BMI.S38440. PMID: 27398023; PMCID: PMC4933534
59 Turner S, Diako C, Kruger R, Wong M, Wood W, Rutherfurd-Markwick K, Ali A. Consuming Gymnema sylvestre Reduces the Desire for High-Sugar Sweet Foods. Nutrients. 2020 Apr 10;12(4):1046. doi: 10.3390/nu12041046. PMID: 32290122; PMCID:
PMC7230589
60 Asadi, A., Shidfar, F., Safari, M., Hosseini, A. F., Fallah Huseini, H., Heidari, I., & Rajab, A. (2019). Efficacy of Melissa officinalis L. (lemon balm) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: A randomized, doubleblind, clinical trial. Phytotherapy research, 33(3), 651-659
61 Khodsooz, S., Moshtaghian, J., & Eivani, M. (2016). Antihyperglycemic and antihyperlipidemic effects of hydroalcoholic extract of Melissa officinalis (Lemon Balm) in alloxan-induced diabetic rats. Physiology and pharmacology, 20(1), 24-30
62 Akhondali Z, Dianat M, Radan M. Negative Chronotropic and Antidysrhythmic Effects of Hydroalcoholic Extract of Lemon Balm (Melissa Officinalis L.) on CaCl2-Induced Arrhythmias in Rats. Electron Physician. 2015 Mar 1;7(1):971-6. doi:10.14661/2015.971-976. PMID: 26052407; PMCID: PMC4455297
63 Hechtman, L. (2012). Advanced clinical naturopathic medicine. NSW, Australia: Elsevier
64 https://pubmed.ncbi.nlm.nih.gov Wińska, K., Mączka, W., Gabryelska, K., & Grabarczyk, M. (2019). Mushrooms of the Genus Ganoderma Used to Treat Diabetes and Insulin Resistance. Molecules (Basel, Switzerland), 24(22), 4075. https://doi.
org/10.3390/molecules24224075
65 Kazazis CE, Evangelopoulos AA, Kollas A, Vallianou NG. The therapeutic potential of milk thistle in diabetes. Rev Diabet Stud. 2014 Summer;11(2):167-74. doi: 10.1900/RDS.2014.11.167. Epub 2014 Aug 10. PMID: 25396404; PMCID: PMC4310066
66 Ebrahimpour-Koujan, S., Gargari, B. P., Mobasseri, M., Valizadeh, H., & Asghari-Jafarabadi, M. (2018). Lower glycemic indices and lipid profile among type 2 diabetes mellitus patients who received novel dose of Silybum marianum (L.) Gaertn. (silymarin) extract supplement: A Triple-blinded randomized controlled clinical trial. Phytomedicine:
international journal of phytotherapy and phytopharmacology, 44, 39–44. https://doi.org/10.1016/j.phymed.2018.03.050
67 Yuan, H. D., Kim, J. T., Kim, S. H., & Chung, S. H. (2012). Ginseng and diabetes: the evidences from in vitro, animal and human studies. Journal of ginseng research, 36(1), 27–39. https://doi.org/10.5142/jgr.2012.36.1.27
68 Braun, L., & Cohen, M. (2005). Herbs & natural supplements: an evidence-based guide (2nd ed.). Sydney: Elsevier Mosby
69 Ma H.-T., Hsieh J.-F., Chen S.-T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry. 2015;114:109–113. doi: 10.1016/j.phytochem.2015.02.017
70 Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. J Ethnopharmacol. 2017;196:47-57
71 https://pubmed.ncbi.nlm.nih.gov/25790910/
72 https://www.ncbi.nlm.nih.gov
73 Cohen MM. Tulsi - Ocimum sanctum: A herb for all reasons. J Ayurveda Integr Med. 2014 Oct-Dec;5(4):251-9. doi: 10.4103/0975-9476.146554. PMID: 25624701; PMCID: PMC4296439
74 Jamshidi N, Cohen MM. The Clinical Efficacy and Safety of Tulsi in Humans: A Systematic Review of the Literature. Evid Based Complement Alternat Med. 2017;2017:9217567. doi: 10.1155/2017/9217567. Epub 2017 Mar 16. PMID: 28400848; PMCID: PMC5376420
75 Sherpa, S. (2022). Turkey Tail Mushroom: Health Benefits, Side Effects, And Usage Guide. Benefits
76 Lo, H. C., Hsu, T. H., & Lee, C. H. (2020). Extracellular polysaccharopeptides from fermented Turkey Tail medicinal mushroom, Trametes versicolor (Agaricomycetes), mitigate oxidative stress, hyperglycemia, and hyperlipidemia in rats with type 2 diabetes mellitus. International Journal of Medicinal Mushrooms, 22(5).
77 Wang, Z., Wang, J., & Chan, P. (2013). Treating type 2 diabetes mellitus with traditional chinese and Indian medicinal herbs. Evidence-based complementary and alternative medicine: eCAM, 2013, 343594. https://doi.org/10.1155/2013/343594
78 Sarris, J., & Wardle, J. (2014). Clinical naturopathy (2nd ed.). Australia: Elsevier


Ch. 16: Thyroid Protocol

1 https://www.ncbi.nlm.nih.gov/books/NBK279388/
2 https://pubmed.ncbi.nlm.nih.gov/24744751/
3 https://www.niddk.nih.gov/health-information/endocrine-diseases/hypothyroidism
4 https://www.niddk.nih.gov/health-information/endocrine-diseases/hyperthyroidism
5 https://www.ncbi.nlm.nih.gov/books/NBK459466/
6 https://t.ly/vao3i
7 https://my.clevelandclinic.org/health/diseases/17665-hashimotos-disease
8 https://www.thyroid.org/thyroid-nodules/
9 https://www.thyroid.org/thyroiditis/
10 https://www.cdc.gov/cancer/thyroid/index.htm
11 Ruggeri, R. M., Giovinazzo, S., Barbalace, M. C., Cristani, M., Alibrandi, A., Vicchio, T.M., ... & Cannavò, S. (2021). Influence of dietary habits on oxidative stress markers in Hashimoto’s thyroiditis. Thyroid, 31(1), 96-105
12 Szczuko, M., Syrenicz, A., Szymkowiak, K., Przybylska, A., Szczuko, U., Pobłocki, J., & Kulpa, D. (2022). Doubtful Justification of the Gluten-Free Diet in the Course of Hashimoto’s Disease. Nutrients, 14(9), 1727
13 Krysiak, R., Szkróbka, W., & Okopień, B. (2019). The effect of gluten-free diet on thyroid autoimmunity in drug-naïve women with Hashimoto’s thyroiditis: a pilot study. Experimental and Clinical Endocrinology & Diabetes, 127(07), 417-422
14 Ihnatowicz, P., Drywień, M., Wątor, P., & Wojsiat, J. (2020). The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Annals of agricultural and environmental medicine, 27(2)
15 https://pubmed.ncbi.nlm.nih.gov/20351569/
16 https://pubmed.ncbi.nlm.nih.gov/30294759/
17 https://pubmed.ncbi.nlm.nih.gov/31257166/
18 https://academic.oup.com/jcem/article/92/11/4180/2598186
19 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056127/
20 https://www.sciencedirect.com/science/article/abs/pii/S0303720717300758?via%3Dihub
21 Knezevic, J., Starchl, C., Tmava Berisha, A., & Amrein, K. (2020). Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function?. Nutrients, 12(6), 1769. https://doi.org/10.3390/nu12061769
22 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015): 1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.gov/26853960/).
23 https://pubmed.ncbi.nlm.nih.gov/17240130/
24 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated
from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher
Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015):
1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50. https://pubmed.ncbi.nlm.nih.
gov/26853960/).
25 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783124/
26 https://pubmed.ncbi.nlm.nih.gov/25591468/
27 https://www.liebertpub.com/doi/abs/10.1089/acm.2017.0183
28 https://pubmed.ncbi.nlm.nih.gov/28829155/
29 https://pubmed.ncbi.nlm.nih.gov/11535365/
30 He, T., Zhao, R., Lu, Y., Li, W., Hou, X., Sun, Y., Dong, M., & Chen, L. (2016). Dual-Directional Immunomodulatory Effects of Corbrin Capsule on Autoimmune Thyroid Diseases. Evidence-based complementary and alternative medicine: eCAM, 2016, 1360386. https://doi.org/10.1155/2016/1360386
31 He, T., Zhao, R., Lu, Y., Li, W., Hou, X., Sun, Y., Dong, M., & Chen, L. (2016). Dual-Directional Immunomodulatory Effects of Corbrin Capsule on Autoimmune Thyroid Diseases. Evidence-based complementary and alternative medicine: eCAM, 2016, 1360386. https://doi.org/10.1155/2016/1360386
32 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287405/
33 https://pubmed.ncbi.nlm.nih.gov/30136914/
34 https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0046740/
35 https://www.mskcc.org/cancer-care/integrative-medicine/herbs/reishi-mushroom
36 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049553/
37 Arbaizar, B., & Llorca, J. (2011). Hipertiroidismo inducido por la ingestión de Fucus vesiculosus en un paciente en tratamiento concomitante con litio [Fucus vesiculosus induced hyperthyroidism in a patient undergoing concomitant treatment with lithium]. Actas espanolas de psiquiatria, 39(6), 401–403
38 Laurberg P. (1984). Forskolin stimulation of thyroid secretion of T4 and T3. FEBS letters, 170(2), 273–276. https://doi.org/10.1016/0014-5793(84)81327-7
39 Sharma, A. K., Basu, I., & Singh, S. (2018). Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial. Journal of alternative and complementary medicine (New York, N.Y.), 24(3), 243–248. https://doi.org/10.1089/acm.2017.0183
40 Sharma, A. K., Basu, I., & Singh, S. (2018). Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial. Journal of alternative and complementary medicine (New York, N.Y.), 24(3), 243–248. https://doi.org/10.1089/acm.2017.0183
41 Eiling R, Wieland V, Niestroj M. Improvement of symptoms in mild hyperthyroidism with an extract of Lycopus europaeus (Thyreogutt® mono). Wien Med Wochenschr. 2013;163(3-4):95-101. doi:10.1007/s10354-012-0167-z
42 Kaplan, D., & Dosiou, C. (2021). Two Cases of Graves’ Hyperthyroidism Treated With Homeopathic Remedies Containing Herbal Extracts from Lycopus spp. and Melissa officinalis. Journal of the Endocrine Society, 5(Suppl 1), A971. https://doi.org/10.1210/jendso/bvab048.1984
43 Auf’Mkolk, M., et al. “Extracts and Auto-Oxidized Constituents of Certain Plants Inhibit the Receptor-Binding and the Biological Activity of Graves’ Igs*.” Endocrinology, vol. 116, no. 5, May 1985, pp. 1687–93. 2
44 Winterhoff, H., et al. “Endocrine Effects of Lycopus Europaeus L. Following Oral Application.” Arzneim. Forsch., vol. I, no. 44, 1944
45 Kaplan, D., & Dosiou, C. (2021). Two Cases of Graves’ Hyperthyroidism 325 Treated with Homeopathic Remedies Containing Herbal Extracts from Lycopus spp. and Melissa officinalis. Journal of the Endocrine Society, 5(Suppl 1), A971. https://doi.org/10.1210/jendso/bvab048.1984
46 Beer, A. M., Wiebelitz, K. R., & Schmidt-Gayk, H. (2008). Lycopus europaeus (Gypsywort): effects on the thyroidal parameters and symptoms associated with thyroid function. Phytomedicine: international journal of phytotherapy and phytopharmacology, 15(1-2), 16–22
47 Kaplan, D., & Dosiou, C. (2021). Two Cases of Graves’ Hyperthyroidism Treated with Homeopathic Remedies Containing Herbal Extracts from Lycopus spp. and Melissa officinalis. Journal of the Endocrine Society, 5(Suppl 1), A971. https://doi.org/10.1210/jendso/bvab048.1984
48 He, T., Zhao, R., Lu, Y., Li, W., Hou, X., Sun, Y., Dong, M., & Chen, L. (2016). Dual-Directional Immunomodulatory Effects of Corbrin Capsule on Autoimmune Thyroid Diseases. Evidence-based complementary and alternative medicine: eCAM, 2016, 1360386. https://doi.org/10.1155/2016/1360386
49 Kaplan, D., & Dosiou, C. (2021). Two Cases of Graves’ Hyperthyroidism Treated with Homeopathic Remedies Containing Herbal Extracts from Lycopus spp. and Melissa officinalis. Journal of the Endocrine Society, 5(Suppl 1), A971. https://doi.org/10.1210/jendso/bvab048.1984
50 Kaplan, D., & Dosiou, C. (2021). Two Cases of Graves’ Hyperthyroidism Treated with Homeopathic Remedies Containing Herbal Extracts from Lycopus spp. and Melissa officinalis. Journal of the Endocrine Society, 5(Suppl 1), A971. https://doi.org/10.1210/jendso/bvab048.1984
51 Shikov, A. N., Pozharitskaya, O. N., Makarov, V. G., Demchenko, D. V., & Shikh, E. V. (2011). Effect of Leonurus cardiaca oil extract in patients with arterial hypertension accompanied by anxiety and sleep disorders. Phytotherapy research: PTR, 25(4), 540–543. https://doi.org/10.1002/ptr.3292
52 Fierascu, R. C., Fierascu, I., Ortan, A., Fierascu, I. C., Anuta, V., Velescu, B. S., Pituru, S. M., & Dinu-Pirvu, C. E. (2019). Leonurus cardiaca L. as a Source of Bioactive Compounds: An Update of the European Medicines Agency Assessment Report (2010). BioMed research international, 2019, 4303215. https://doi.org/10.1155/2019/4303215
53 Kim, M., & Lee, B. C. (2019). Therapeutic Effect of Scutellaria baicalensis on L-Thyroxine-Induced Hyperthyroidism Rats. Evidence-based complementary and alternative medicine: eCAM, 2019, 3239649. https://doi.org/10.1155/2019/3239649
54 Winterhoff, H., Sourgens, H., & Kemper, F. H. (1983). Antihormonal effects of plant extracts. Pharmacodynamic effects of lithospermum officinale on the thyroid gland of rats; comparison with the effects of iodide. Hormone and metabolic research = Hormonund Stoffwechselforschung = Hormones et metabolisme, 15(10), 503–507. https://doi.org/10.1055/s-2007-1018769
55 Breneman, W. R., & Zeller, F. J. (1975). Lithosperm inhibition of anterior pituitary hormones. Biochemical and biophysical research communications, 65(3), 1047–1053. https://doi.org/10.1016/s0006-291x(75)80491-8
56 He, T., Zhao, R., Lu, Y., Li, W., Hou, X., Sun, Y., Dong, M., & Chen, L. (2016). Dual-Directional Immunomodulatory Effects of Corbrin Capsule on Autoimmune Thyroid Diseases. Evidence-based complementary and alternative medicine: eCAM, 2016, 1360386. https://doi.org/10.1155/2016/1360386
57 Jin, M., Zhou, W., Jin, C., Jiang, Z., Diao, S., Jin, Z., & Li, G. (2019). Anti-inflammatory activities of the chemical constituents isolated from Trametes versicolor. Natural product research, 33(16), 2422–2425. https://doi.org/10.1080/14786419.2018.1446011
58 Chen, J. L., Chen, Y. C., Yang, S. H., Ko, Y. F., & Chen, S. Y. (2009). Immunological alterations in lupus-prone autoimmune (NZB/NZW) F1 mice by mycelia Chinese medicinal fungus Cordyceps sinensis-induced redistributions of peripheral mononuclear T lymphocytes. Clinical and experimental medicine, 9(4), 277–284. https://doi.org/10.1007/
s10238-009-0043-3
59 Friedman M. (2015). Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. Journal of agricultural and food chemistry, 63(32), 7108–7123. https://doi.org/10.1021/acs.jafc.5b02914
60 Cao, J., Su, Y., Chen, Z., Ma, C., & Xiong, W. (2022). The risk factors for Graves’ ophthalmopathy. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 260(4), 1043–1054. https://doi.org/10.1007/s00417-021-05456-x
61 Winther, K. H., Rayman, M. P., Bonnema, S. J., & Hegedüs, L. (2020). Selenium in thyroid disorders - essential knowledge for clinicians. Nature reviews. Endocrinology, 16(3), 165–176. https://doi.org/10.1038/s41574-019-0311-6
62 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618598/
63 Chao, G., Zhu, Y., & Fang, L. (2020). Correlation Between Hashimoto’s Thyroiditis-Related Thyroid Hormone Levels and 25-Hydroxyvitamin D. Frontiers in endocrinology, 11, 4. https://doi.org/10.3389/fendo.2020.00004
64 Ahn, H. Y., Chung, Y. J., & Cho, B. Y. (2017). Serum 25-hydroxyvitamin D might be an independent prognostic factor for Graves’ disease recurrence. Medicine, 96(31), e7700. https://doi.org/10.1097/MD.0000000000007700
65 Taheriniya, S., Arab, A., Hadi, A., Fadel, A., & Askari, G. (2021). Vitamin D and thyroid disorders: a systematic review and Meta-analysis of observational studies. BMC endocrine disorders, 21(1), 171. https://doi.org/10.1186/s12902-021-00831-5
66 https://pubmed.ncbi.nlm.nih.gov/19693445/
67 Hou, T. Y., Wu, S. B., Kau, H. C., & Tsai, C. C. (2021). The Role of Oxidative Stress and Therapeutic Potential of Antioxidants in Graves’ Ophthalmopathy. Biomedicines, 9(12), 1871. https://doi.org/10.3390/biomedicines9121871
68 https://pubmed.ncbi.nlm.nih.gov/16500878/
69 Jabczyk, M., Nowak, J., Hudzik, B., & Zubelewicz-Szkodzińska, B. (2021). Curcumin in Metabolic Health and Disease. Nutrients, 13(12), 4440. https://doi.org/10.3390/nu13124440
70 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569681/
71 Ferrari, S. M., Fallahi, P., Antonelli, A., & Benvenga, S. (2017). Environmental Issues in Thyroid Diseases. Frontiers in endocrinology, 8, 50. https://doi.org/10.3389/fendo.2017.00050
72 Benvenga, S., Elia, G., Ragusa, F., Paparo, S. R., Sturniolo, M. M., Ferrari, S. M., Antonelli, A., & Fallahi, P. (2020). Endocrine disruptors and thyroid autoimmunity. Best practice & research. Clinical endocrinology & metabolism, 34(1), 101377. https://doi.org/10.1016/j.beem.2020.101377
73 https://pubmed.ncbi.nlm.nih.gov/12762077/
74 https://pubs.acs.org/doi/abs/10.1021/es1041942
75 https://link.springer.com/article/10.2478/s11536-009-0092-8
76 https://www.mayoclinic.org/adrenal-glands/img-20008674
77 https://thyroidresearchjournal.biomedcentral.com/articles/10.1186/1756-6614-5-13
78 Fukao, A., Takamatsu, J., Murakami, Y., Sakane, S., Miyauchi, A., Kuma, K., Hayashi, S., & Hanafusa, T. (2003). The relationship of psychological factors to the prognosis of hyperthyroidism in antithyroid drug-treated patients with Graves’ disease. Clinical endocrinology, 58(5), 550–555. https://doi.org/10.1046/j.1365-2265.2003.01625.x
79 https://pubmed.ncbi.nlm.nih.gov/15650357/
80 https://pubmed.ncbi.nlm.nih.gov/15650357/
81 Lindahl O, Lindwall L. Double blind study of a valerian preparation. Pharmacol Biochem Behav. 1989 Apr;32(4):1065-6. doi: 10.1016/0091-3057(89)90082-8. PMID:2678162. https://pubmed.ncbi.nlm.nih.gov/2678162/
82 https://stanfordmedicine25.stanford.edu/the25/thyroid.html


Ch. 17: Bacterial Infection Protocol

1 Shomali, N., Mahmoudi, J., Mahmoodpoor, A., Zamiri, R. E., Akbari, M., Xu, H., & Shotorbani, S. S. (2021). Harmful effects of high amounts of glucose on the immune system: An updated review. Biotechnology and applied biochemistry, 68(2), 404–410. https://doi.org/10.1002/bab.1938
2 Yu, Z., Wang, Y., Lu, J., Bond, P.L., & Guo, J. (2021). Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. ISME J, 15:2117–2130. https://doi.org/10.1038/s41396-021-00909-x
3 Dahl-Jørgensen, K., Joner, G., & Hanssen, K. F. (1991). Relationship between cows’ milk consumption and incidence of IDDM in childhood. Diabetes care, 14(11), 1081–1083. https://doi.org/10.2337/diacare.14.11.1081
4 Gerstein H. C. (1994). Cow’s milk exposure and type I diabetes mellitus. A critical overview of the clinical literature. Diabetes care, 17(1), 13–19. https://doi.org/10.2337/diacare.17.1.13
5 Malosse, D., Perron, H., Sasco, A., & Seigneurin, J. M. (1992). Correlation between milk and dairy product consumption and multiple sclerosis prevalence: a worldwide study. Neuroepidemiology, 11(4-6), 304–312. https://doi.org/10.1159/000110946
6 Agranoff, B. W., & Goldberg, D. (1974). Diet and the geographical distribution of multiple sclerosis. Lancet (London, England), 2(7888), 1061–1066. https://doi.org/10.1016/s0140-6736(74)92163-1
7 Frosh, A., Cruz, C., Wellsted, D., & Stephens, J. (2019). Effect of a dairy diet on nasopharyngeal mucus secretion. The Laryngoscope, 129(1), 13–17. https://doi.org/10.1002/lary.27287
8 Phillips, B. L., & Bland, R. D. (1972). Otitis media, milk allergy, and folk medicine. Pediatrics, 50(2), 346.
9 Sarkar, D., Jung, M. K., & Wang, H. J. (2015). Alcohol and the Immune System. Alcohol Research: Current Reviews, 37(2), 153–155.
10 Sarkar, D., Jung, M. K., & Wang, H. J. (2015). Alcohol and the Immune System. Alcohol Research: Current Reviews, 37(2), 153–155.
11 Qiu, F., Liang, C. L., Liu, H., Zeng, Y. Q., Hou, S., Huang, S., Lai, X., & Dai, Z. (2017). Impacts of cigarette smoking on immune responsiveness: Up and down or upside down?. Oncotarget, 8(1), 268–284. https://doi.org/10.18632/oncotarget.13613
12 Myles I. A. (2014). Fast food fever: reviewing the impacts of the Western diet on immunity. Nutrition journal, 13, 61. https://doi.org/10.1186/1475-2891-13-61
13 Samuel, A. O., Huang, B. T., Chen, Y., Guo, F. X., Yang, D. D., & Jin, J. Q. (2021). Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch.) Bge. Scientific reports, 11(1), 19625. https://doi.org/10.1038/s41598-021-97109-6
14 Sullivan, A. M., Laba, J. G., Moore, J. A., & Lee, T. D. (2008). Echinacea-induced macrophage activation. Immunopharmacology and immunotoxicology, 30(3), 553–574. https://doi.org/10.1080/08923970802135534
15 Moghtaderi, M., Mirzaie, A., Zabet, N., Moammeri, A., Mansoori-Kermani, A., Akbarzadeh, I., Eshrati Yeganeh, F., Chitgarzadeh, A., Bagheri Kashtali, A., & Ren, Q. (2021). Enhanced Antibacterial Activity of Echinacea angustifolia Extract against Multidrug-Resistant Klebsiella pneumoniae through Niosome Encapsulation. Nanomaterials (Basel, Switzerland), 11(6), 1573. https://doi.org/10.3390/nano11061573
16 Hudson J. B. (2012). Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. Journal of biomedicine & biotechnology, 2012, 769896. https://doi.org/10.1155/2012/769896
17 Cech, N. B., Junio, H. A., Ackermann, L. W., Kavanaugh, J. S., & Horswill, A. R. (2012). Quorum quenching and antimicrobial activity of goldenseal (Hydrastis canadensis) 326 against methicillin-resistant Staphylococcus aureus (MRSA). Planta medica, 78(14), 1556–1561. https://doi.org/10.1055/s-0032-1315042
18 Omar S. H. (2010). Oleuropein in olive and its pharmacological effects. Scientia pharmaceutica, 78(2), 133–154. https://doi.org/10.3797/scipharm.0912-18
19 Sudjana, A. N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N., Riley, T. V., & Hammer, K. A. (2009). Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International journal of antimicrobial agents, 33(5), 461–463. https://doi.org/10.1016/j.ijantimicag.2008.10.026
20 Kosakowska, O., Węglarz, Z., Pióro-Jabrucka, E., Przybył, J. L., Kraśniewska, K., Gniewosz, M., & Bączek, K. (2021). Antioxidant and Antibacterial Activity of Essential Oils and Hydroethanolic Extracts of Greek Oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and Common Oregano (O. vulgare L. subsp. vulgare). Molecules (Basel, Switzerland),26(4), 988. https://doi.org/10.3390/molecules26040988
21 Antih, J., Houdkova, M., Urbanova, K., & Kokoska, L. (2021). Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques. Molecules (Basel, Switzerland), 26(21), 6553. https://doi.org/10.3390/molecules26216553
22 Micucci, M., Protti, M., Aldini, R., Frosini, M., Corazza, I., Marzetti, C., Mattioli, L. B., Tocci, G., Chiarini, A., Mercolini, L., & Budriesi, R. (2020). Thymus vulgaris L. Essential Oil Solid Formulation: Chemical Profile and Spasmolytic and Antimicrobial Effects. Biomolecules, 10(6), 860. https://doi.org/10.3390/biom10060860
23 Patil, S. M., Ramu, R., Shirahatti, P. S., Shivamallu, C., & Amachawadi, R. G. (2021). A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon, 7(5), e07054. https://doi.org/10.1016/j.heliyon.2021.e07054
24 Patil, S. M., Ramu, R., Shirahatti, P. S., Shivamallu, C., & Amachawadi, R. G. (2021). A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon, 7(5), e07054. https://doi.org/10.1016/j.heliyon.2021.e07054
25 Niamsa, N., & Sittiwet, C. (2009). Antimicrobial activity of Curcuma longa aqueous extract. Journal of Pharmacology and Toxicology. 4(4):173–177.
26 Ungphaiboon, S., Supavita, T., Singchangchai, P., Sungkarak, S., Rattanasuwan, P., & Itharat, A. (2005). Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients. Songklanakarin Journal of Science and Technology. 27(2):269–578
27 Popovici, V., Bucur, L., Calcan, S. I., Cucolea, E. I., Costache, T., Rambu, D., Schröder, V., Gîrd, C. E., Gherghel, D., Vochita, G., Caraiane, A., & Badea, V. (2021). Elemental Analysis and In Vitro Evaluation of Antibacterial and Antifungal Activities of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. Plants (Basel, Switzerland), 11(1), 32. https://doi.org/10.3390/plants11010032
28 El-Kalamouni, C., Venskutonis, P. R., Zebib, B., Merah, O., Raynaud, C., & Talou, T. (2017). Antioxidant and Antimicrobial Activities of the Essential Oil of Achillea millefolium L. Grown in France. Medicines (Basel, Switzerland), 4(2), 30. https://doi.
org/10.3390/medicines4020030
29 Cör, D., Knez, Ž., & Knez Hrnčič, M. (2018). Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules (Basel, Switzerland), 23(3), 649. https://doi.org/10.3390/molecules23030649
30 Li, D. G., & Ren, Z. X. (2017). Cordyceps sinensis promotes immune regulation and enhances bacteriostatic activity of PA-824 via IL-10 in Mycobacterium tuberculosis disease. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 50(9), e6188. https://doi.org/10.1590/1414-431X20176188
31 Shang, X., Tan, Q., Liu, R., Yu, K., Li, P., & Zhao, G. P. (2013). In vitro anti-Helicobacter pylori effects of medicinal mushroom extracts, with special emphasis on the Lion’s Mane mushroom, Hericium erinaceus (higher Basidiomycetes). International journal of medicinal mushrooms, 15(2), 165–174. https://doi.org/10.1615/intjmedmushr.v15.i2.50
32 Pilzk, Z., Mycol, A.J., Timbreza, L.P., Reyes, J.L., Flores, C.H., Perez, R., Stockel, M.A., & Santiago, K.A. (2017). Antibacterial activities of the lichen Ramalina and Usnea collected from Mt . Banoi , Batangas and Dahilayan , Bukidnon , against multi-drug resistant (MDR ) bacteria.
33 Sleha, R., Radochova, V., Malis, J., Mikyska, A., Houska, M., Krofta, K., Bogdanova, K., Janovska, S., Pejchal, J., Kolar, M., Cermak, P., & Bostik, P. (2021). Strong Antimicrobial and Healing Effects of Beta-Acids from Hops in Methicillin-Resistant Staphylococcus aureus-Infected External Wounds In Vivo. Antibiotics (Basel, Switzerland), 10(6), 708.
https://doi.org/10.3390/antibiotics10060708
34 Budán, F., Nan, M., Kocsis, B., & Laczkó-Zöld, E. (2021). Antimicrobial activity and potential secondary signal transduction mechanisms of elecampane (Inula helenium l.) root extract. Plant cell biotechnology and molecular biology, 22(7-8), 86-92.
35 Doyle, T. (2016). Mahonia aquifolia, commonly known as Oregon Grape, is an effective antibacterial, including treatment of Methicillin-resistant Staphylococcus aureus (MRSA). American College of Healthcare.
36 Zuo, G. Y., Li, Y., Han, J., Wang, G. C., Zhang, Y. L., & Bian, Z. Q. (2012). Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules (Basel, Switzerland), 17(9), 10322–10330. https://doi.org/10.3390/molecules170910322
37 Gatea-Kaabi, S.A., Abdulrazaq, R.A., Rasool, K.H., & Khassaf, S.A. (2020). Western herbal remedies for Urinary Tract infections. Archive of Urological Research. 4(1):49-60.
38 Fazly Bazzaz, B.S., Darvishi Fork, S., Ahmadi, R., & Khameneh, B. (2021). Deep insights into urinary tract infections and effective natural remedies. Afr J Urol 27(6). https://doi.org/10.1186/s12301-020-00111-z
39 Das S. (2020). Natural therapeutics for urinary tract infections-a review. Future journal of pharmaceutical sciences, 6(1), 64. https://doi.org/10.1186/s43094-020-00086-2
40 Tsao, S. M., Liu, W. H., & Yin, M. C. (2007). Two diallyl sulphides derived from garlic inhibit meticillin-resistant Staphylococcus aureus infection in diabetic mice. Journal of medical microbiology, 56(Pt 6), 803–808. https://doi.org/10.1099/jmm.0.46998-0
41 Nidadavolu, P., Amor, W., Tran, P. L., Dertien, J., Colmer-Hamood, J. A., & Hamood, A. N. (2012). Garlic ointment inhibits biofilm formation by bacterial pathogens from burn wounds. Journal of medical microbiology, 61(Pt 5), 662–671. https://doi.org/10.1099/jmm.0.038638-0
42 Cutler, R. R., & Wilson, P. (2004). Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. British journal of biomedical science, 61(2), 71–74. https://doi.org/10.1080/09674845.2004.11732646
43 Li, G., Ma, X., Deng, L., Zhao, X., Wei, Y., Gao, Z., Jia, J., Xu, J., & Sun, C. (2015). Fresh Garlic Extract Enhances the Antimicrobial Activities of Antibiotics on Resistant Strains in Vitro. Jundishapur journal of microbiology, 8(5), e14814. https://doi.org/10.5812/jjm.14814
44 Kim J. H. (1997). Anti-bacterial action of onion (Allium cepa L.) extracts against oral pathogenic bacteria. The Journal of Nihon University School of Dentistry, 39(3), 136–141. https://doi.org/10.2334/josnusd1959.39.136
45 Sharma, K., Mahato, N., & Lee, Y. R. (2018). Systematic study on active compounds as antibacterial and antibiofilm agent in aging onions. Journal of food and drug analysis, 26(2), 518–528. https://doi.org/10.1016/j.jfda.2017.06.009
46 Hannan, A., Humayun, T., Hussain, M. B., Yasir, M., & Sikandar, S. (2010). In vitro antibacterial activity of onion (Allium cepa) against clinical isolates of Vibrio cholerae. Journal of Ayub Medical College, Abbottabad: JAMC, 22(2), 160–163.
47 Mahomoodally, F., Ramcharun, S., & Zengin, G. (2018). Onion and Garlic Extracts Potentiate the Efficacy of Conventional Antibiotics against Standard and Clinical Bacterial Isolates. Current topics in medicinal chemistry, 18(9), 787–796. https://doi.org/10.2174/1568026618666180604083313
48 Mandal, M. D., & Mandal, S. (2011). Honey: its medicinal property and antibacterial activity. Asian Pacific journal of tropical biomedicine, 1(2), 154–160. https://doi.org/10.1016/S2221-1691(11)60016-6
49 Tonks, A. J., Dudley, E., Porter, N. G., Parton, J., Brazier, J., Smith, E. L., & Tonks, A. (2007). A 5.8-kDa component of manuka honey stimulates immune cells via TLR4. Journal of leukocyte biology, 82(5), 1147–1155. https://doi.org/10.1189/jlb.1106683
50 Lusby, P. E., Coombes, A. L., & Wilkinson, J. M. (2005). Bactericidal activity of different honeys against pathogenic bacteria. Archives of medical research, 36(5), 464–467. https://doi.org/10.1016/j.arcmed.2005.03.038
51 Yagnik, D., Serafin, V., & J Shah, A. (2018). Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression. Scientific reports, 8(1), 1732. https://doi.org/10.1038/s41598-017-18618-x
52 Yagnik, D., Ward, M. & Shah, A.J. (2021). Antibacterial apple cider vinegar eradicates methicillin resistant Staphylococcus aureus and resistant Escherichia coli. Sci Rep 11(1854). https://doi.org/10.1038/s41598-020-78407-x
53 Manjunatha, J. R., Bettadaiah, B. K., Negi, P. S., & Srinivas, P. (2013). Synthesis of quinoline derivatives of tetrahydrocurcumin and zingerone and evaluation of their antioxidant and antibacterial attributes. Food chemistry, 136(2), 650–658. https://doi.org/10.1016/j.foodchem.2012.08.052
54 Mahady, G. B., Pendland, S. L., Yun, G. S., Lu, Z. Z., & Stoia, A. (2003). Ginger (Zingiber officinale Roscoe) and the gingerols inhibit the growth of Cag A+ strains of Helicobacter pylori. Anticancer research, 23(5A), 3699–3702.
55 Azu N, Onyeagba R. (2007). Antimicrobial Properties Of Extracts Of Allium cepa (Onions) and Zingiber officinale (Ginger) On Escherichia coli, Salmonella typhi and Bacillus subtilis. The Internet Journal of Tropical Medicine. 2007(3):1–10
56 Hiserodt, R.D., Franzblau, S.G., Rosen, R.T. (1998). Isolation of 6-, 8-, and 10-Gingerol from Ginger Rhizome by HPLC and Preliminary Evaluation of Inhibition of Mycobacterium avium and Mycobacterium tuberculosis. Agric Food Chem. 1998(46):2504–2508.
57 Chambial, S., Dwivedi, S., Shukla, K. K., John, P. J., & Sharma, P. (2013). Vitamin C in disease prevention and cure: an overview. Indian journal of clinical biochemistry: IJCB, 28(4), 314–328. https://doi.org/10.1007/s12291-013-0375-3
58 Mar-Solís, L. M., Soto-Domínguez, A., Rodríguez-Tovar, L. E., Rodríguez-Rocha, H., García-García, A., Aguirre-Arzola, V. E., Zamora-Ávila, D. E., Garza-Arredondo, A. J., & Castillo-Velázquez, U. (2021). Analysis of the Anti-Inflammatory Capacity of Bone Broth in a Murine Model of Ulcerative Colitis. Medicina (Kaunas, Lithuania), 57(11), 1138. https://doi.org/10.3390/medicina57111138
59 Satomura, K., Kitamura, T., Kawamura, T., Shimbo, T., Watanabe, M., Kamei, M., Takano, Y., Tamakoshi, A., & Great Cold Investigators-I (2005). Prevention of upper respiratory tract infections by gargling: a randomized trial. American journal of preventive medicine, 29(4), 302–307. https://doi.org/10.1016/j.amepre.2005.06.013
60 Zobell, C. E., Anderson, D. Q., & Smith, W. W. (1937). The Bacteriostatic and Bactericidal Action of Great Salt Lake Water. Journal of bacteriology, 33(3), 253–262. https://doi.org/10.1128/jb.33.3.253-262.1937
61 Jantsch, J., Schatz, V., Friedrich, D., Schröder, A., Kopp, C., Siegert, I., Maronna, A., Wendelborn, D., Linz, P., Binger, K. J., Gebhardt, M., Heinig, M., Neubert, P., Fischer, F., Teufel, S., David, J. P., Neufert, C., Cavallaro, A., Rakova, N., Küper, C., … Titze, J. (2015). Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and
boosts macrophage-driven host defense. Cell metabolism, 21(3), 493–501. https://doi.org/10.1016/j.cmet.2015.02.003
62 Emamian, M. H., Hassani, A. M., & Fateh, M. (2013). Respiratory Tract Infections and its Preventive Measures among Hajj Pilgrims, 2010: A Nested Case Control Study. International journal of preventive medicine, 4(9), 1030–1035.
63 Rabago, D., & Zgierska, A. (2009). Saline nasal irrigation for upper respiratory conditions. American family physician, 80(10), 1117–1119. 327
64 Swamy, M.K., Akhtar, M.S., & Sinniah, U.R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-based complementary and alternative medicine: eCAM, 2016, 3012462. https://doi.org/10.1155/2016/3012462
65 Swamy, M.K., Akhtar, M.S., & Sinniah, U.R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-based complementary and alternative medicine: eCAM, 2016, 3012462. https://doi.org/10.1155/2016/3012462
66 Imai, H., Osawa, K., Yasuda, H., Hamashima, H., Arai, T., & Sasatsu, M. (2001). Inhibition by the essential oils of peppermint and spearmint of the growth of pathogenic bacteria. Microbios, 106 Suppl 1, 31–39.
67 Hemilä H. (2017). Vitamin C and Infections. Nutrients, 9(4), 339. https://doi.org/10.3390/nu9040339
68 Gunville, C. F., Mourani, P. M., & Ginde, A. A. (2013). The role of vitamin D in prevention and treatment of infection. Inflammation & allergy drug targets, 12(4), 239–245. https://doi.org/10.2174/18715281113129990046
69 Lewis, E. D., Meydani, S. N., & Wu, D. (2019). Regulatory role of vitamin E in the immune system and inflammation. IUBMB life, 71(4), 487–494. https://doi.org/10.1002/iub.1976
70 Yan, F., & Polk, D. B. (2011). Probiotics and immune health. Current opinion in gastroenterology, 27(6), 496–501. https://doi.org/10.1097/MOG.0b013e32834baa4d
71 Li, X., Wang, Q., Hu, X., & Liu, W. (2022). Current Status of Probiotics as Supplements in the Prevention and Treatment of Infectious Diseases. Frontiers in cellular and infection microbiology, 12, 789063. https://doi.org/10.3389/fcimb.2022.789063
72 Besedovsky, L., Lange, T., & Born, J. (2012). Sleep and immune function. Pflugers Archiv: European journal of physiology, 463(1), 121–137. https://doi.org/10.1007/s00424-011-1044-0
73 Everson C. A. (1993). Sustained sleep deprivation impairs host defense. The American journal of physiology, 265(5 Pt 2), R1148–R1154. https://doi.org/10.1152/ajpregu.1993.265.5.R1148
74 Besedovsky, L., Lange, T., & Born, J. (2012). Sleep and immune function. Pflugers Archiv: European journal of physiology, 463(1), 121–137. https://doi.org/10.1007/s00424-011-1044-0
75 Akhavan, B.J., Khanna, N.R., & Vijhani, P. Amoxicillin. [Updated 2021 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482250/
76 Bailey, A., Walker, A., Hadley, A., & James, D. G. (1970). Cephalexin--a new oral antibiotic. Postgraduate medical journal, 46(533), 157–158. https://doi.org/10.1136/pgmj.46.533.157
77 Herman TF, Hashmi MF. Cephalexin. [Updated 2022 Feb 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549780/


Ch. 18: Flu, Viral, and Immune System Protocol

1 Yu, S., Zhang, G., & Jin, L. H. (2018). A high-sugar diet affects cellular and humoral immune responses in Drosophila. Experimental cell research, 368(2), 215–224. https://doi.org/10.1016/j.yexcr.2018.04.032
2 Alkhatib A. (2020). Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients, 12(9), 2633. https://doi.org/10.3390/nu12092633
3 Rouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., Nahar, L., Tiralongo, E., & Sarker, S. D. (2020). Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in food science & technology, 104, 219–234. https://doi.org/10.1016/j.tifs.2020.08.006
4 Cheng, C. W., Adams, G. B., Perin, L., Wei, M., Zhou, X., Lam, B. S., Da Sacco, S., Mirisola, M., Quinn, D. I., Dorff, T. B., Kopchick, J. J., & Longo, V. D. (2014). Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell stem cell, 14(6), 810–823. https://doi.org/10.1016/j.stem.2014.04.014
5 de Cabo, R., & Mattson, M. P. (2019). Effects of Intermittent Fasting on Health, Aging, and Disease. The New England journal of medicine, 381(26), 2541–2551. https://doi.org/10.1056/NEJMra1905136
6 Hannan, M. A., Rahman, M. A., Rahman, M. S., Sohag, A., Dash, R., Hossain, K. S., Farjana, M., & Uddin, M. J. (2020). Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response. Immunology letters, 226, 38–45. https://doi.org/10.1016/j.
imlet.2020.07.001
7 Jakubowicz, D., Landau, Z., Tsameret, S., Wainstein, J., Raz, I., Ahren, B., Chapnik, N., Barnea, M., Ganz, T., Menaged, M., Mor, N., Bar-Dayan, Y., & Froy, O. (2019). Reduction in Glycated Hemoglobin and Daily Insulin Dose Alongside Circadian Clock Upregulation in Patients With Type 2 Diabetes Consuming a Three-Meal Diet: A Randomized Clinical
Trial. Diabetes care, 42(12), 2171–2180. https://doi.org/10.2337/dc19-1142
8 Besedovsky, L., Lange, T., & Born, J. (2012). Sleep and immune function. Pflugers Archiv : European journal of physiology, 463(1), 121–137. https://doi.org/10.1007/s00424-011-1044-0
9 Vgontzas, A. N., Zoumakis, E., Bixler, E. O., Lin, H. M., Follett, H., Kales, A., & Chrousos, G. P. (2004). Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. The Journal of clinical endocrinology and metabolism, 89(5), 2119–2126. https://doi.org/10.1210/jc.2003-031562
10 Amatriain-Fernández, S., Gronwald, T., Murillo-Rodríguez, E., Imperatori, C., Solano, A. F., Latini, A., & Budde, H. (2020). Physical Exercise Potentials Against Viral Diseases Like COVID-19 in the Elderly. Frontiers in medicine, 7, 379. https://doi.org/10.3389/fmed.2020.00379
11 Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., Swain, D. P., & American College of Sports Medicine (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently
healthy adults: guidance for prescribing exercise. Medicine and science in sports and exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb
12 Fortes, M. B., Diment, B. C., Di Felice, U., & Walsh, N. P. (2012). Dehydration decreases saliva antimicrobial proteins important for mucosal immunity. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 37(5), 850–859. https://doi.org/10.1139/h2012-054
13 Adhikari, B., Marasini, B. P., Rayamajhee, B., Bhattarai, B. R., Lamichhane, G., Khadayat, K., Adhikari, A., Khanal, S., & Parajuli, N. (2021). Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytotherapy research: PTR, 35(3), 1298–1312. https://doi.org/10.1002/ptr.6893
14 Zheng, Y., Ren, W., Zhang, L., Zhang, Y., Liu, D., & Liu, Y. (2020). A Review of the Pharmacological Action of Astragalus Polysaccharide. Frontiers in pharmacology, 11, 349. https://doi.org/10.3389/fphar.2020.00349
15 Tronina, T., Mrozowska, M., Bartmańska, A., Popłoński, J., Sordon, S., & Huszcza, E. (2021). Simple and Rapid Method for Wogonin Preparation and Its Biotransformation. International journal of molecular sciences, 22(16), 8973. https://doi.org/10.3390/ijms22168973
16 Li, R. F., Zhou, X. B., Zhou, H. X., Yang, Z. F., Jiang, H. M., Wu, X., Li, W. J., Qiu, J. J., Mi, J. N., Chen, M., Zhong, N. S., Zhu, G. Y., & Jiang, Z. H. (2021). Novel Fatty Acid in Cordyceps Suppresses Influenza A (H1N1) Virus-Induced Proinflammatory Response Through Regulating Innate Signaling Pathways. ACS omega, 6(2), 1505–1515. https://doi.org/10.1021/acsomega.0c05264
17 Verma AK. Cordycepin: a bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J Biomol Struct Dyn. 2022 May;40(8):3745-3752. doi: 10.1080/07391102.2020.1850352. Epub 2020 Nov 23. PMID: 33225826; PMCID: PMC7754931
18 Verma A. K. (2022). Cordycepin: a bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. Journal of biomolecular structure & dynamics, 40(8), 3745–3752. https://doi.org/10.1080/07391102.2020.1850352
19 Ueda, Y., Mori, K., Satoh, S., Dansako, H., Ikeda, M., & Kato, N. (2014). Anti-HCV activity of the Chinese medicinal fungus Cordyceps militaris. Biochemical and biophysical research communications, 447(2), 341–345. https://doi.org/10.1016/j.bbrc.2014.03.150
20 Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides—Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants. 2021; 10(12):1899. https://doi.org/10.3390/antiox10121899
21 Nahas, R., & Balla, A. (2011). Complementary and alternative medicine for prevention and treatment of the common cold. Canadian family physician Medecin de famille canadien, 57(1), 31–36.
22 Nahas, R., & Balla, A. (2011). Complementary and alternative medicine for prevention and treatment of the common cold. Canadian family physician Medecin de famille canadien, 57(1), 31–36.
23 Zakay-Rones, Z., Thom, E., Wollan, T., & Wadstein, J. (2004). Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. The Journal of international medical research, 32(2), 132–140. https://doi.org/10.1177/147323000403200205
24 Wieland, L. S., Piechotta, V., Feinberg, T., Ludeman, E., Hutton, B., Kanji, S., Seely, D., & Garritty, C. (2021). Elderberry for prevention and treatment of viral respiratory illnesses: a systematic review. BMC complementary medicine and therapies, 21(1), 112. https://doi.org/10.1186/s12906-021-03283-5
25 Kronbichler, A., Effenberger, M., Eisenhut, M., Lee, K. H., & Shin, J. I. (2020). Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view. Autoimmunity reviews, 19(7), 102570. https://doi.org/10.1016/j.autrev.2020.102570
26 Cecil, C. E., Davis, J. M., Cech, N. B., & Laster, S. M. (2011). Inhibition of H1N1 influenza A virus growth and induction of inflammatory mediators by the isoquinoline alkaloid berberine and extracts of goldenseal (Hydrastis canadensis). International immunopharmacology, 11(11), 1706–1714. https://doi.org/10.1016/j.intimp.2011.06.002
27 Shang, X., Pan, H., Li, M., Miao, X., & Ding, H. (2011). Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of ethnopharmacology, 138(1), 1–21. https://doi.org/10.1016/j.jep.2011.08.016
28 Yeh, Y. C., Doan, L. H., Huang, Z. Y., Chu, L. W., Shi, T. H., Lee, Y. R., Wu, C. T., Lin, C. H., Chiang, S. T., Liu, H. K., Chuang, T. H., Ping, Y. H., Liu, H. S., & Huang, C. F. (2022). Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) Suppress SARSCoV-2 Entry and COVID-19 Related Cytokine Storm in Vitro. Frontiers in pharmacology, 12, 765553. https://doi.org/10.3389/fphar.2021.765553
29 Astani, A., Navid, M. H., & Schnitzler, P. (2014). Attachment and penetration of acyclovir-resistant herpes simplex virus are inhibited by Melissa officinalis extract. Phytotherapy research: PTR, 28(10), 1547–1552. https://doi.org/10.1002/ptr.5166
30 Vanti, G., Ntallis, S. G., Panagiotidis, C. A., Dourdouni, V., Patsoura, C., Bergonzi, M. C., Lazari, D., & Bilia, A. R. (2020). Glycerosome of Melissa officinalis L. Essential Oil for Effective Anti-HSV Type 1. Molecules (Basel, Switzerland), 25(14), 3111. https://doi.org/10.3390/molecules25143111
31 Mazzanti, G., Battinelli, L., Pompeo, C., Serrilli, A. M., Rossi, R., Sauzullo, I., Mengoni, F., & Vullo, V. (2008). Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Natural product research, 22(16), 1433–1440. https://doi.328 org/10.1080/14786410802075939
32 Mehrbod, P., Safari, H., Mollai, Z., Fotouhi, F., Mirfakhraei, Y., Entezari, H., Goodarzi, S., & Tofighi, Z. (2021). Potential antiviral effects of some native Iranian medicinal plants extracts and fractions against influenza A virus. BMC complementary medicine and therapies, 21(1), 246. https://doi.org/10.1186/s12906-021-03423-x
33 Wang, L., Yang, R., Yuan, B., Liu, Y., & Liu, C. (2015). The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta pharmaceutica Sinica. B, 5(4), 310–315. https://doi.org/10.1016/j.apsb.2015.05.005s
34 Adhikari, B., Marasini, B. P., Rayamajhee, B., Bhattarai, B. R., Lamichhane, G., Khadayat, K., Adhikari, A., Khanal, S., & Parajuli, N. (2021). Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytotherapy research: PTR, 35(3), 1298–1312. https://doi.org/10.1002/ptr.6893
35 Diling, C., Chaoqun, Z., Jian, Y., Jian, L., Jiyan, S., Yizhen, X., & Guoxiao, L. (2017). Immunomodulatory Activities of a Fungal Protein Extracted from Hericium erinaceus through Regulating the Gut Microbiota. Frontiers in immunology, 8, 666. https://doi.org/10.3389/fimmu.2017.00666
36 Madia, V. N., De Angelis, M., De Vita, D., Messore, A., De Leo, A., Ialongo, D., Tudino, V., Saccoliti, F., De Chiara, G., Garzoli, S., Scipione, L., Palamara, A. T., Di Santo, R., Nencioni, L., & Costi, R. (2021). Investigation of Commiphora myrrha (Nees) Engl. Oil and Its Main Components for Antiviral Activity. Pharmaceuticals (Basel, Switzerland), 14(3), 243.
https://doi.org/10.3390/ph14030243
37 Brochot, A., Guilbot, A., Haddioui, L., & Roques, C. (2017). Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen, 6(4), e00459. https://doi.org/10.1002/mbo3.459
38 Ahmad, M. F., Ahmad, F. A., Khan, M. I., Alsayegh, A. A., Wahab, S., Alam, M. I., & Ahmed, F. (2021). Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. International journal of biological macromolecules, 187, 769–779. https://doi.org/10.1016/j.ijbiomac.2021.06.122
39 Zhi-Bin Lin. “Cellular and Molecular Mechanisms of Immuno-modulation by Ganoderma lucidum.” J Pharmacol Sci 99, 144-153. 2005
40 Elmekkawy, S.; Meselhy, M.R.; Nakamura, N.; Tezuka, Y.; Hattori, M.; Kakiuchi, N.; Shimotohno, K.; Kawahata, T.; Otake, T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma Lucidum. Phytochemistry 1998, 49, 1651–1657
41 Min, B. S., Nakamura, N., Miyashiro, H., Bae, K. W. & Hattori, M. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull 46, 1607–1612 (1998)
42 Zhu, Q. C. et al. Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design. Scientific reports 5, 13194 (2015)
43 Zheng, D. S. & Chen, L. S. Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors. Exp Ther Med 14, 3273–3278 (2017).
44 Bharadwaj, S., Lee, K.E., Dwivedi, V.D. et al. Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease. Sci Rep 9, 19059 (2019). https://doi.org/10.1038/s41598-019-55723-5
45 Ng, T. B., Wang, H., & Wan, D. C. C. (2006). Polysaccharopeptide from the Turkey Tail Fungus Trametes versicolor (L.: Fr.) Pilát Inhibits Human Immunodeficiency Virus Type 1 Reverse Transciptase and Protease. International Journal of Medicinal Mushrooms, 8(1).
46 Ingólfsdóttir K. (2002). Usnic acid. Phytochemistry, 61(7), 729–736. https://doi.org/10.1016/s0031-9422(02)00383-7
47 RxList. (2021, June 11). Yerba Santa: Health benefits, side effects, uses, Dose & precautions. RxList. Retrieved July 20, 2022, from https://www.rxlist.com/yerba_santa/supplements.htm
48 Turker, A. U., & Camper, N. D. (2002). Biological activity of common mullein, a medicinal plant. Journal of ethnopharmacology, 82(2-3), 117–125. https://doi.org/10.1016/s0378-8741(02)00186-1
49 Blanco-Salas, J., Hortigón-Vinagre, M. P., Morales-Jadán, D., & Ruiz-Téllez, T. (2021). Searching for Scientific Explanations for the Uses of Spanish Folk Medicine: A Review on the Case of Mullein (Verbascum, Scrophulariaceae). Biology, 10(7), 618. https://doi.org/10.3390/biology10070618
50 Turker, A. U., & Camper, N. D. (2002). Biological activity of common mullein, a medicinal plant. Journal of ethnopharmacology, 82(2-3), 117–125. https://doi.org/10.1016/s0378-8741(02)00186-1
51 Süleyman, H., Odabasoglu, F., Aslan, A., Cakir, A., Karagoz, Y., Gocer, F., Halici, M., & Bayir, Y. (2003). Anti-inflammatory and antiulcerogenic effects of the aqueous extract of Lobaria pulmonaria (L.) Hoffm. Phytomedicine: international
journal of phytotherapy and phytopharmacology, 10(6-7), 552–557. https://doi.org/10.1078/094471103322331539
52 Augspole, I., Duma, M., Cinkmanis, I., Ozola, B. (2018). Herbal teas as a rich source of phenolic compounds. Analytical Chemistry. 29(4), https://doi.org/10.6001/chemija.v29i4.3841
53 Jaruporn Rakmai, J. Rakmai, Benjamas Cheirsilp, B. Cheirsilp, Ana Torrado-Agrasar, A. Torrado-Agrasar, Jesús Simal-Gándara, J. Simal-Gándara, & Juan Carlos Mejuto, J. Carlos Mejuto. (2017). Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: physiochemical characterization and evaluation of bio-efficacies. CyTA: journal of food, 15, 409-417. doi: 10.1080/19476337.2017.1286523
54 Sales, A.J., Malekzadeh, P., Ebrahimzadeh, M., Kondlaji, K.B., Kaleybar, V.P., Dizaji, A.S. (2015). Evaluation of the anti-bacterial effects of ethanolic extract of yarrow (Achillea wilhelmsii) on antibioticresistant strains of Staphylococcus aureus. Journal of Science and Today’s World. 4(6), 189-192. DOI: 10.13140/RG.2.2.10488.49921
55 Nahas, R., & Balla, A. (2011). Complementary and alternative medicine for prevention and treatment of the common cold. Canadian family physician Medecin de famille canadien, 57(1), 31–36.
56 Gorton, H. C., & Jarvis, K. (1999). The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. Journal of manipulative and physiological therapeutics, 22(8), 530–533. https://doi.org/10.1016/s0161-4754(99)70005-9
57 Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020). Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients, 12(4), 988. https://doi.org/10.3390/nu12040988
58 Stephensen, C. B., & Lietz, G. (2021). Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. The British journal of nutrition, 126(11), 1663–1672. https://doi.org/10.1017/S0007114521000246
59 Mossad, S. B., Macknin, M. L., Medendorp, S. V., & Mason, P. (1996). Zinc gluconate lozenges for treating the common cold. A randomized, double-blind, placebo-controlled study. Annals of internal medicine, 125(2), 81–88. https://doi.org/10.7326/0003-4819-125-2-199607150-00001
60 Prasad, A. S., Fitzgerald, J. T., Bao, B., Beck, F. W., & Chandrasekar, P. H. (2000). Duration of symptoms and plasma cytokine levels in patients with the common cold treated with zinc acetate. A randomized, double-blind, placebo-controlled trial. Annals of internal medicine, 133(4), 245–252. https://doi.org/10.7326/0003-4819-133-4-200008150-00006
61 Schloss, J., Leach, M., Brown, D., Hannan, N., Kendall-Reed, P., & Steel, A. (2020). The effects of N-acetyl cysteine on acute viral respiratory infections in humans: A rapid review. Advances in integrative medicine, 7(4), 232–239. https://doi.org/10.1016/j.aimed.2020.07.006
62 Heer, C. D., Sanderson, D. J., Voth, L. S., Alhammad, Y., Schmidt, M. S., Trammell, S., Perlman, S., Cohen, M. S., Fehr, A. R., & Brenner, C. (2020). Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity. The Journal of biological chemistry, 295(52), 17986–17996. https://doi.org/10.1074/jbc.RA120.015138
63 Buijze, G. A., Sierevelt, I. N., van der Heijden, B. C., Dijkgraaf, M. G., & Frings-Dresen, M. H. (2016). The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial. PloS one, 11(9), e0161749. https://doi.org/10.1371/journal.pone.0161749
64 Kox, M., van Eijk, L. T., Zwaag, J., van den Wildenberg, J., Sweep, F. C., van der Hoeven, J. G., & Pickkers, P. (2014). Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7379–7384. https://doi.org/10.1073/pnas.1322174111
65 Ophir, D., & Elad, Y. (1987). Effects of steam inhalation on nasal patency and nasal symptoms in patients with the common cold. American journal of otolaryngology, 8(3), 149–153. https://doi.org/10.1016/s0196-0709(87)80037-6
66 Garozzo, A., Timpanaro, R., Stivala, A., Bisignano, G., & Castro, A. (2011). Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: study on the mechanism of action. Antiviral research, 89(1), 83–88. https://doi.org/10.1016/j.antiviral.
2010.11.010
67 Mieres-Castro, D., Ahmar, S., Shabbir, R., & Mora-Poblete, F. (2021). Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets against Human Viruses. Pharmaceuticals (Basel, Switzerland), 14(12), 1210. https://doi.org/10.3390/ph14121210
68 Asif, M., Saleem, M., Saadullah, M., Yaseen, H. S., & Al Zarzour, R. (2020). COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology, 28(5), 1153–1161. https://doi.org/10.1007/s10787-020-00744-0
69 Asif, M., Saleem, M., Saadullah, M., Yaseen, H. S., & Al Zarzour, R. (2020). COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology, 28(5), 1153–1161. https://doi.org/10.1007/s10787-020-00744-0
70 Schuhmacher, A., Reichling, J., & Schnitzler, P. (2003). Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine: international journal of phytotherapy and phytopharmacology, 10(6-7), 504–510. https://doi.org/10.1078/094471103322331467
71 Ramalingam, S., Graham, C., Dove, J., Morrice, L., & Sheikh, A. (2019). A pilot, open labelled, randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common cold. Scientific reports, 9(1), 1015. https://doi.org/10.1038/s41598-018-37703-3


Ch. 19: Fungal Infection Protocol

1 Gupta, A. K., Nicol, K., & Batra, R. (2004). Role of antifungal agents in the treatment of seborrheic dermatitis. American journal of clinical dermatology, 5(6), 417–422. https://doi.org/10.2165/00128071-200405060-00006
2 Kuruvella T, Pandey S. Tinea Barbae. (2022). Tinea barbae. In Statpearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK563204/
3 Elewski B. E. (1998). Onychomycosis: pathogenesis, diagnosis, and management. Clinical microbiology reviews, 11(3), 415–429. https://doi.org/10.1128/CMR.11.3.415
4 Yu, S., Zhang, G., & Jin, L. H. (2018). A high-sugar diet affects cellular and humoral immune responses in Drosophila. Experimental cell research, 368(2), 215–224. https://doi.org/10.1016/j.yexcr.2018.04.032
5 Sanchez, A., Reeser, J. L., Lau, H. S., Yahiku, P. Y., Willard, R. E., McMillan, P. J., Cho, S. Y., Magie, A. R., & Register, U. D. (1973). Role of sugars in human neutrophilic phagocytosis. The American journal of clinical nutrition, 26(11), 1180–1184. https://doi.org/10.1093/ajcn/26.11.1180
6 Kiselar, J. G., Wang, X., Dubyak, G. R., El Sanadi, C., Ghosh, S. K., Lundberg, K., 329 & Williams, W. M. (2015). Modification of β-Defensin-2 by Dicarbonyls Methylglyoxal and Glyoxal Inhibits Antibacterial and Chemotactic Function In Vitro. PloS one, 10(8), e0130533. https://doi.org/10.1371/journal.pone.0130533
7 Rahiman, F., & Pool, E. J. (2014). The in vitro effects of artificial and natural sweeteners on the immune system using whole blood culture assays. Journal of immunoassay & immunochemistry, 35(1), 26–36. https://doi.org/10.1080/15321819.2013.784197
8 Vanegas, S. M., Meydani, M., Barnett, J. B., Goldin, B., Kane, A., Rasmussen, H., Brown, C., Vangay, P., Knights, D., Jonnalagadda, S., Koecher, K., Karl, J. P., Thomas, M., Dolnikowski, G., Li, L., Saltzman, E., Wu, D., & Meydani, S. N. (2017). Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and
immune and inflammatory markers of healthy adults. The American journal of clinical nutrition, 105(3), 635–650. https://doi.org/10.3945/ajcn.116.146928
9 Bodemer, A. (2018, July 23). Seborrheic Dermatitis. Whole Health Library. Retrieved July 15, 2022, from https://www.va.gov/WHOLEHEALTHLIBRARY/tools/seborrheic-dermatitis.asp
10 Talattof, Z., Azad, A., Zahed, M., & Shahradnia, N. (2018). Antifungal Activity of Xylitol against Candida albicans: An in vitro Study. The journal of contemporary dental practice, 19(2), 125–129. https://doi.org/10.5005/jp-journals-10024-2225
11 Pizzo, G., Giuliana, G., Milici, M. E., & Giangreco, R. (2000). Effect of dietary carbohydrates on the in vitro epithelial adhesion of Candida albicans, Candida tropicalis, and Candida krusei. The new microbiologica, 23(1), 63–71.
12 Yagnik, D., Serafin, V., & J Shah, A. (2018). Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression. Scientific reports, 8(1), 1732. https://doi.org/10.1038/s41598-017-18618-x
13 Mota, A. C., de Castro, R. D., de Araújo Oliveira, J., & de Oliveira Lima, E. (2015). Antifungal Activity of Apple Cider Vinegar on Candida Species Involved in Denture Stomatitis. Journal of prosthodontics: official journal of the American College of Prosthodontists, 24(4), 296–302. https://doi.org/10.1111/jopr.12207
14 Ogbolu, D. O., Oni, A. A., Daini, O. A., & Oloko, A. P. (2007). In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria. Journal of medicinal food, 10(2), 384–387. https://doi.org/10.1089/jmf.2006.1209
15 Khalid Thebo, N., Ahmed Simair, A., Sughra Mangrio, G., Ansari, K. A., Ali Bhutto, A., Lu, C., & Ali Sheikh, W. (2016). Antifungal Potential and Antioxidant Efficacy in the Shell Extract of Cocos nucifera (L.) (Arecaceae) against Pathogenic Dermal Mycosis. Medicines (Basel, Switzerland), 3(2), 12. https://doi.org/10.3390/medicines3020012
16 Saniasiaya, J., Salim, R., Mohamad, I., & Harun, A. (2017). Antifungal Effect of Malaysian Aloe vera Leaf Extract on Selected Fungal Species of Pathogenic Otomycosis Species in In Vitro Culture Medium. Oman medical journal, 32(1), 41–46. https://doi.org/10.5001/omj.2017.08
17 Nabila, V. K., & Putra, I. B. (2020). The effect of Aloe vera ethanol extract on the growth inhibition of Candida albicans. Medicinski glasnik : official publication of the Medical Association of Zenica-Doboj Canton, Bosnia and Herzegovina, 17(2), 485–489. https://doi.org/10.17392/1098-20
18 Saniasiaya, J., Salim, R., Mohamad, I., & Harun, A. (2017). Antifungal Effect of Malaysian Aloe vera Leaf Extract on Selected Fungal Species of Pathogenic Otomycosis Species in In Vitro Culture Medium. Oman medical journal, 32(1), 41–46. https://doi.org/10.5001/omj.2017.08
19 Nenoff, P., Haustein, U. F., & Brandt, W. (1996). Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro. Skin pharmacology: the official journal of the Skin Pharmacology Society, 9(6), 388–394. https://doi.org/10.1159/000211450
20 Behmanesh, F., Pasha, H., Sefidgar, A. A., Taghizadeh, M., Moghadamnia, A. A., Adib Rad, H., & Shirkhani, L. (2015). Antifungal Effect of Lavender Essential Oil (Lavandula angustifolia) and Clotrimazole on Candida albicans: An In Vitro Study. Scientifica, 2015, 261397. https://doi.org/10.1155/2015/261397
21 Cassella, S., Cassella, J.P., & Smith, I. (2002). Synergistic antifungal activity of tea tree (Melaleuca alternifolia) and lavender (Lavandula angustifolia) essential oils against dermatophyte infection. International Journal of Aromatherapy. 12(1), 2-15. https://doi.org/10.1054/ijar.2001.0127
22 Burlando, B., & Cornara, L. (2013). Honey in dermatology and skin care: a review. Journal of cosmetic dermatology, 12(4), 306–313. https://doi.org/10.1111/jocd.12058
23 Irish, J., Carter, D. A., Shokohi, T., & Blair, S. E. (2006). Honey has an antifungal effect against Candida species. Medical mycology, 44(3), 289–291. https://doi.org/10.1080/13693780500417037
24 Moussa, A., Noureddine, D., Saad, A., Abdelmelek, M., & Abdelkader, B. (2012). Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp. Asian Pacific journal of tropical biomedicine, 2(7), 554–557. https://doi.org/10.1016/S2221-1691(12)60096-3
25 Anand, S., Deighton, M., Livanos, G., Pang, E., & Mantri, N. (2019). Agastache honey has superior antifungal activity in comparison with important commercial honeys. Scientific reports, 9(1), 18197. https://doi.org/10.1038/s41598-019-54679-w
26 Shahi, S. K., Shukla, A. C., Bajaj, A. K., Banerjee, U., Rimek, D., Midgely, G., & Dikshit, A. (2000). Broad spectrum herbal therapy against superficial fungal infections. Skin pharmacology and applied skin physiology, 13(1), 60–64. https://doi.org/10.1159/000029909
27 Omura, Y., O’Young, B., Jones, M., Pallos, A., Duvvi, H., & Shimotsuura, Y. (2011). Caprylic acid in the effective treatment of intractable medical problems of frequent urination, incontinence, chronic upper respiratory infection, root canalled tooth infection, ALS, etc., caused by asbestos & mixed infections of Candida albicans, Helicobacter
pylori & cytomegalovirus with or without other microorganisms & mercury. Acupuncture & electro-therapeutics research, 36(1-2), 19–64. https://doi.org/10.3727/036012911803860886
28 Bae, Y. S., & Rhee, M. S. (2019). Short-Term Antifungal Treatments of Caprylic Acid with Carvacrol or Thymol Induce Synergistic 6-Log Reduction of Pathogenic Candida albicans by Cell Membrane Disruption and Efflux Pump Inhibition. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 53(2), 285–300. https://doi.org/10.33594/000000139
29 Smith, E. B., Powell, R. P., Graham, J. L., & Ulrich, J. A. (1977). Topical undecylenic acid in tinea pedis: a new look. International journal of dermatology, 16(1), 52–56. https://doi.org/10.1111/j.1365-4362.1977.tb00741.x
30 Chretien, J. H., Esswein, J. G., Sharpe, L. M., Kiely, J. J., & Lyddon, F. E. (1980). Efficacy of undecylenic acid-zinc undecylenate powder in culture positive tinea pedis. International journal of dermatology, 19(1), 51–54. https://doi.org/10.1111/j.1365-4362.1980.tb01997.x
31 Ramadan, W., Mourad, B., Ibrahim, S., & Sonbol, F. (1996). Oil of bitter orange: new topical antifungal agent. International journal of dermatology, 35(6), 448–449. https://doi.org/10.1111/j.1365-4362.1996.tb03032.x
32 Kunyeit, L., Kurrey, N. K., Anu-Appaiah, K. A., & Rao, R. P. (2019). Probiotic Yeasts Inhibit Virulence of Non-albicans Candida Species. mBio, 10(5), e02307-19. https://doi.org/10.1128/mBio.02307-19
33 Vilela, S. F., Barbosa, J. O., Rossoni, R. D., Santos, J. D., Prata, M. C., Anbinder, A. L., Jorge, A. O., & Junqueira, J. C. (2015). Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence, 6(1), 29–39. https://doi.org/10.4161/21505594.2014.981486
34 Matsubara, V. H., Wang, Y., Bandara, H., Mayer, M., & Samaranayake, L. P. (2016). Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Applied microbiology and biotechnology, 100(14), 6415–6426. https://doi.org/10.1007/s00253-016-7527-3
35 Kunyeit, L., Kurrey, N. K., Anu-Appaiah, K. A., & Rao, R. P. (2019). Probiotic Yeasts Inhibit Virulence of Non-albicans Candida Species. mBio, 10(5), e02307-19. https://doi.org/10.1128/mBio.02307-19
36 Wu, Y., Hu, S., Wu, C., Gu, F., & Yang, Y. (2022). Probiotics: Potential Novel Therapeutics Against Fungal Infections. Frontiers in cellular and infection microbiology, 11, 793419. https://doi.org/10.3389/fcimb.2021.793419
37 Singhal, D., Baker, L., Wormald, P. J., & Tan, L. (2011). Aspergillus fumigatus biofilm on primary human sinonasal epithelial culture. American journal of rhinology & allergy, 25(4), 219–225. https://doi.org/10.2500/ajra.2011.25.3622
38 Kean, R., & Ramage, G. (2019). Combined Antifungal Resistance and Biofilm Tolerance: The Global Threat of Candida auris. mSphere, 4(4), e00458-19. https://doi.org/10.1128/mSphere.00458-19
39 Matsubara, V. H., Wang, Y., Bandara, H., Mayer, M., & Samaranayake, L. P. (2016). Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Applied microbiology and biotechnology, 100(14), 6415–6426. https://doi.org/10.1007/s00253-016-7527-3
40 Yamashita, M., Sawano, J., Umeda, R., Tatsumi, A., Kumeda, Y., & Iida, A. (2021). Structure-Activity Relationship Studies of Antimicrobial Naphthoquinones Derived from Constituents of Tabebuia avellanedae. Chemical & pharmaceutical bulletin, 69(7), 661–673. https://doi.org/10.1248/cpb.c21-00208
41 Gómez Castellanos, J. R., Prieto, J. M., & Heinrich, M. (2009). Red Lapacho (Tabebuia impetiginosa)- a global ethnopharmacological commodity?. Journal of ethnopharmacology, 121(1), 1–13. https://doi.org/10.1016/j.jep.2008.10.004
42 Pârvu, M., Moţ, C. A., Pârvu, A. E., Mircea, C., Stoeber, L., Roşca-Casian, O., & Ţigu, A. B. (2019). Allium sativum Extract Chemical Composition, Antioxidant Activity and Antifungal Effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa Causing Onychomycosis. Molecules (Basel, Switzerland), 24(21), 3958. https://doi.org/10.3390/molecules24213958
43 Ranković, B., Kosanić, M., Stanojković, T., Vasiljević, P., & Manojlović, N. (2012). Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. International journal of molecular sciences, 13(11), 14707–14722. https://doi.org/10.3390/ijms131114707
44 Madamombe, I.T. & Afolayan, A.J. (2008). Evaluation of Antimicrobial Activity of Extracts from South African Usnea barbata. Pharmaceutical Biology. 41:3, 199-202, DOI: 10.1076/ phbi.41.3.199.15089
45 Ho, K. V., Lei, Z., Sumner, L. W., Coggeshall, M. V., Hsieh, H. Y., Stewart, G. C., & Lin, C. H. (2018). Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites, 8(4), 58. https://doi.org/10.3390/metabo8040058
46 Yun, J., Lee, H., Ko, H. J., Woo, E. R., & Lee, D. G. (2015). Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochimica et biophysica acta, 1848(2), 695–701. https://doi.org/10.1016/j.bbamem.2014.11.019
47 Murugesh, J., Annigeri, R. G., Mangala, G. K., Mythily, P. H., & Chandrakala, J. (2019). Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: An in vitro study. Journal of oral and maxillofacial pathology: JOMFP, 23(2), 305. https://doi.org/10.4103/jomfp.JOMFP_200_18
48 Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed research international, 2014, 186864. https://doi.org/10.1155/2014/186864
49 National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 4189, Miconazole. Retrieved July 14, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Miconazole.
50 Khatter, N.J. & Khan, M.A.B. (2022). Clotrimazole. In Statpearls [Internet]. Treasure 330 Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK560643/
51 Maxfield, L., Preuss, C.V., & Bermudez, R. (2022). Terbinafine. In Statpearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK545218/
52 Maxfield, L., Preuss, C.V., & Bermudez, R. (2022). Terbinafine. In Statpearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK545218/
53 Kalińska-Bienias, A., Kowalewski, C., & Woźniak, K. (2013). Terbinafine-induced subacute cutaneous lupus erythematosus in two patients with systemic lupus erythematosus successfully treated with topical corticosteroids. Postepy dermatologii i alergologii, 30(4), 261–264. https://doi.org/10.5114/pdia.2013.37038


Ch. 20: Lyme Disease Protocol

1 Centers for Disease Control and Prevention. (2020, May 15). Vector-borne diseases in the United States, 2004-2018. Centers for Disease Control and Prevention. Retrieved March 18, 2022, from https://www.cdc.gov/ncezid/dvbd/vital-signs/index.html
2 Morrison, G. (2002). The invisible kingdom. Titan.
3 Guerra, M. (2002). Predicting the risk of lyme disease: Habitat suitability for Ixodes scapularis in the north central United States. Emerging Infectious Diseases, 8(3), 289–297. https://doi.org/10.3201/eid0803.010166
4 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
5 Lyme disease. (2020, October 01). Retrieved March 24, 2022, from https://t.ly/pvcZ.
6 Hersh, E. (2017, August 29). Erythema migrans: Identification, treatment, and more. Retrieved March 18, 2022, from shorturl.at/jrCEM.
7 Heart block. (n.d.). Retrieved March 23, 2022, from https://cutt.ly/R8d0zMX.
8 New-onset Bell palsy and Lyme disease. (2017). Canadian family physician Medecin de famille canadien, 63(12), 941.
9 Steere, A. C. (1994). Pathogenesis, diagnosis and treatment of lyme arthritis. Lyme Borreliosis, 1-5. doi:10.1007/978-1-4615-2415-1_1
10 Anastasia Climan, R. (2021, May 15). What you need to know about the stages of lyme disease. Retrieved March 23, 2022, from https://cutt.ly/p8d0EBS.
11 Tick bite prophylaxis. (2019, May 30). Retrieved March 22, 2022, from https://www.cdc.gov/ticks/tickbornediseases/tick-bite-prophylaxis.html
12 Feng, J., Leone, J., Schweig, S., & Zhang, Y. (2020). Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B. Burgdorferi. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00006
13 Feng, J., Leone, J., Schweig, S., & Zhang, Y. (2020). Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B. Burgdorferi. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00006
14 Anastasia Climan, R. (2021, May 15). What you need to know about the stages of lyme disease. Retrieved March 21, 2022, from https://cutt.ly/p8d0EBS.
15 https://www.arizonaadvancedmedicine.com/articles/2013/june/lyme-disease/)
16 Grapefruit seeds extract - Brorson, O., & Brorson, S. H. (2007). Grapefruit seed extract is a powerful in vitro agent against motile and cystic forms of Borrelia burgdorferi sensu lato. Infection, 35(3), 206–208. https://doi.org/10.1007/s15010-007-6105-0. https://pubmed.ncbi.nlm.nih.gov/17565468/
17 Centers for Disease Control and Prevention. Post-treatment Lyme disease syndrome.
18 Campos M. Lyme disease: resolving the “Lyme wars.” Harvard Health Publishing.
19 Karvonen, K., Nykky, J., Marjomäki, V., & Gilbert, L. (2021). Distinctive Evasion Mechanisms to Allow Persistence of Borrelia burgdorferi in Different Human Cell Lines. Frontiers in microbiology, 12, 711291. https://doi.org/10.3389/fmicb.2021.711291. https://pubmed.ncbi.nlm.nih.gov/34712208/
20 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
21 Hyde, J., Plaza, J. A., & Kaffenberger, J. (2021). Interstitial granuloma annulare triggered by Lyme disease. Dermatology online journal, 27(5), 10.5070/D327553618. https://doi.org/10.5070/D327553618
22 Lyme Disease Prevention & Risk Factors. (n.d.). Retrieved March 21, 2022, from https://cutt.ly/a8d2TRZ.
23 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
24 Nelson, C. A., Hayes, C. M., Markowitz, M. A., Flynn, J. J., Graham, A. C., Delorey, M. J., Mead, P. S., & Dolan, M. C. (2016). The heat is on: Killing blacklegged ticks in residential washers and dryers to prevent tickborne diseases. Ticks and tick-borne diseases, 7(5), 958–963. https://doi.org/10.1016/j.ttbdis.2016.04.016
25 Identifying tick bites. (2022, February 25). Retrieved March 22, 2022, from https://igenex.com/tick-talk/identifying-tick-bites/
26 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
27 Transmission. (2020, January 29). Retrieved March 24, 2022, from https://www.cdc.gov/lyme/transmission/index.html
28 Lyme Disease Prevention & Risk Factors. (n.d.). Retrieved March 21, 2022, from https://cutt.ly/a8d2TRZ.
29 Osimitz, T., Murphy, J., Fell, L., & Page, B. (2010). Adverse events associated with the use of insect repellents containing N,N-diethyl-M-toluamide (DEET). Regulatory Toxicology and Pharmacology, 56(1), 93-99. doi:10.1016/j.yrtph.2009.09.004
30 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
31 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
32 Right to know hazardous substance fact sheet. (n.d.). Retrieved March 23, 2022, from https://nj.gov/health/eoh/rtkweb/documents/fs/3422.pdf
33 Saar-Reismaa, P., Bragina, O., Kuhtinskaja, M., Reile, I., Laanet, P. R., Kulp, M., & Vaher, M. (2022). Extraction and Fractionation of Bioactives from Dipsacus fullonum L. Leaves and Evaluation of Their Anti-Borrelia Activity. Pharmaceuticals (Basel, Switzerland), 15(1), 87. https://doi.org/10.3390/ph15010087 https://pubmed.ncbi.nlm.nih.
gov/35056144/
34 Oszmiański, J., Wojdyło, A., Juszczyk, P., & Nowicka, P. (2020). Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities. Plants (Basel, Switzerland), 9(1), 78. https://doi.org/10.3390/plants9010078 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020454/
35 Saar-Reismaa, P., Bragina, O., Kuhtinskaja, M., Reile, I., Laanet, P. R., Kulp, M., & Vaher, M. (2022). Extraction and Fractionation of Bioactives from Dipsacus fullonum L. Leaves and Evaluation of Their Anti-Borrelia Activity. Pharmaceuticals (Basel, Switzerland), 15(1), 87. https://doi.org/10.3390/ph15010087. https://pubmed.ncbi.nlm.nih.
gov/35056144/
36 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
37 Chaturvedi, R., & Chaturvedi, S. (2011). A review on different therapeutic uses and antimicrobial potential of garlic. South Asian Journal of Experimental Biology, 1(5), 20-25. doi:10.38150/sajeb.1(5). p20-25
38 Garlic (allicin) - herbs database. (2018, September 05). Retrieved March 22, 2022, from https://rawlsmd.com/herbs/garlic-allicin
39 Feng, J., Leone, J., Schweig, S., & Zhang, Y. (2020). Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B. Burgdorferi. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00006
40 Galiniak, S., Aebisher, D., & Bartusik-Aebisher, D. (2019). Health benefits of Resveratrol Administration. Acta Biochimica Polonica. doi:10.18388/abp.2018_2749
41 Ma, X., Leone, J., Schweig, S., & Zhang, Y. (2021). Botanical medicines with activity against Stationary phase bartonella henselae. Infectious Microbes and Diseases, 3(3), 158-167. doi:10.1097/im9.0000000000000069
42 Feng, J., Leone, J., Schweig, S., & Zhang, Y. (2020). Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B. Burgdorferi. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00006
43 Feng, J., Leone, J., Schweig, S., & Zhang, Y. (2020). Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B. Burgdorferi. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00006
44 Ansah, C., & Mensah, K. B. (2013). A review of the anticancer potential of the antimalarial herbal cryptolepis sanguinolenta and its major alkaloid cryptolepine. Ghana medical journal, 47(3), 137–147.
45 Ma, X., Leone, J., Schweig, S., & Zhang, Y. (2021). Botanical medicines with activity against Stationary phase bartonella henselae. Infectious Microbes and Diseases, 3(3), 158-167. doi:10.1097/im9.0000000000000069
46 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
47 Zhao, T., Tang, H., Xie, L., Zheng, Y., Ma, Z., Sun, Q., & Li, X. (2019). Scutellaria baicalensis georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology, 71(9), 1353-1369. doi:10.1111/jphp.13129
48 Liao, H., Ye, J., Gao, L., & Liu, Y. (2021). The main bioactive compounds of scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomedicine & Pharmacotherapy, 133, 110917. doi:10.1016/j.biopha.2020.110917
49 Su, X., & Miller, L. H. (2015). The discovery of artemisinin and the nobel prize in physiology or medicine. Science China Life Sciences, 58(11), 1175-1179. doi:10.1007/s11427-015-4948-7
50 Eckstein-Ludwig, U., Webb, R. J., Van Goethem, I. D., East, J. M., Lee, A. G., Kimura, M., . . . Krishna, S. (2003). Artemisinins target the Serca of Plasmodium falciparum. Nature, 424(6951), 957-961. doi:10.1038/nature01813
51 Feng, J., Leone, J., Schweig, S., & Zhang, Y. (2020). Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B. Burgdorferi. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00006
52 Singh, N., Bhalla, M., De Jager, P., & Gilca, M. (2011). An overview on ashwagandha: A rasayana (rejuvenator) of ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5S). doi:10.4314/ajtcam.v8i5s.9 331
53 Cropley, M., Banks, A. P., & Boyle, J. (2015). The effects ofrhodiola ROSEAL. extract on anxiety, stress, cognition and other mood symptoms. Phytotherapy Research, 29(12), 1934-1939. doi:10.1002/ptr.5486
54 Saar-Reismaa, P., Bragina, O., Kuhtinskaja, M., Reile, I., Laanet, P. R., Kulp, M., & Vaher, M. (2022). Extraction and Fractionation of Bioactives from Dipsacus fullonum L. Leaves and Evaluation of Their Anti-Borrelia Activity. Pharmaceuticals (Basel, Switzerland), 15(1), 87. https://doi.org/10.3390/ph15010087 https://pubmed.ncbi.nlm.nih.gov/35056144/
55 Oszmiański, J., Wojdyło, A., Juszczyk, P., & Nowicka, P. (2020). Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities. Plants (Basel, Switzerland), 9(1), 78. https://doi.org/10.3390/plants9010078 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020454/
56 Saar-Reismaa, P., Bragina, O., Kuhtinskaja, M., Reile, I., Laanet, P. R., Kulp, M., & Vaher, M. (2022). Extraction and Fractionation of Bioactives from Dipsacus fullonum L. Leaves and Evaluation of Their Anti-Borrelia Activity. Pharmaceuticals (Basel, Switzerland), 15(1), 87. https://doi.org/10.3390/ph15010087. https://pubmed.ncbi.nlm.nih.
gov/35056144/
57 Grant, W. B., & Holick, M. F. (2005). Benefits and requirements of vitamin D for optimal health: a review. Alternative medicine review: a journal of clinical therapeutic, 10(2), 94–111.
58 T Donta, S. (2012). Issues in the diagnosis and treatment of lyme disease. The Open Neurology Journal, 6(1), 140-145. doi:10.2174/1874205x01206010140
59 Dleland. (2021, December 08). How good nutrition can help you recover from lyme disease. Retrieved April 3, 2022, from https://www.lymedisease.org/how-good-nutrition-can-help-you-recover-from-lyme-disease/
60 Van Gorkom, G., Klein Wolterink, R., Van Elssen, C., Wieten, L., Germeraad, W., & Bos, G. (2018). Influence of vitamin C on lymphocytes: An overview. Antioxidants, 7(3), 41. doi:10.3390/antiox7030041
61 Muller, K. E. (2012). Damage of collagen and elastic fibres by borrelia burgdorferi – known and new clinical and histopathological aspects. The Open Neurology Journal, 6(1), 179-186. doi:10.2174/1874205x01206010179
62 Prasad, A. S. (2008). Zinc in human health: Effect of zinc on immune cells. Molecular Medicine, 14(5-6), 353-357. doi:10.2119/2008-00033.prasad
63 Kruse-Jarres J. D. (1989). The significance of zinc for humoral and cellular immunity. Journal of trace elements and electrolytes in health and disease, 3(1), 1–8.
64 Gao, X., Lampraki, E., Al-Khalidi, S., Qureshi, M. A., Desai, R., & Wilson, J. B. (2017). N-acetylcysteine (NAC) ameliorates Epstein-Barr virus latent membrane protein 1 induced chronic inflammation. PLOS ONE, 12(12). doi:10.1371/journal.pone.0189167
65 Zhao Z, et al. NF-κB is a key modulator in the signaling pathway of Borrelia burgdorferi BmpA-induced inflammatory chemokines in murine microglia BV2 cells. Mol Med Rep. 2018; 17(4): 4953-4958
66 Gutierrez-Hoffmann, M. G., O’Meally, R. N., Cole, R. N., Tiniakou, E., Darrah, E., & Soloski, M. J. (2020). Borrelia burgdorferi-induced changes in the class II self-immunopeptidome displayed on HLA-DR molecules expressed by dendritic cells. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00568
67 Inflammation: What is it, causes, symptoms & treatment. (n.d.). Retrieved April 2, 2022, from https://my.clevelandclinic.org/health/symptoms/21660-inflammation
68 Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., . . . Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25(12), 1822-1832. doi:10.1038/s41591-019-0675-0
69 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
70 Cör, D., Knez, Ž, & Knez Hrnčič, M. (2018). Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of ganoderma lucidum terpenoids and Polysaccharides: A Review. Molecules, 23(3), 649. doi:10.3390/molecules23030649
71 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
72 Gutiérrez, S., Svahn, S. L., & Johansson, M. E. (2019). Effects of omega-3 fatty acids on immune cells. International Journal of Molecular Sciences, 20(20), 5028. doi:10.3390/ijms20205028
73 Dyall, S. C. (2015). Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and dha. Frontiers in Aging Neuroscience, 7. doi:10.3389/fnagi.2015.00052
74 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
75 Thipe, V. C., Mentor, S., Lima, C. S., Freitas, L. F., Fonseca, A. C., Nogueira, K. M., . . . Lugão, A. B. (2022). The role of probiotics in maintaining immune homeostasis. Probiotics in the Prevention and Management of Human Diseases, 41-58. doi:10.1016/b978-0-12-823733-5.00024-6
76 Dleland. (2021, December 08). How good nutrition can help you recover from lyme disease. Retrieved April 3, 2022, from https://www.lymedisease.org/how-good-nutrition-can-help-you-recover-from-lyme-disease/
77 Gutiérrez, S., Svahn, S. L., & Johansson, M. E. (2019). Effects of omega-3 fatty acids on immune cells. International Journal of Molecular Sciences, 20(20), 5028. doi:10.3390/ijms20205028
78 Anti-inflammatory diet – made easy: Arthritis NSW. (2021, December 20). Retrieved April 2, 2022, from https://www.arthritisnsw.org.au/anti-inflammatory-diet-made-easy/
79 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
80 Rawls, W. (2017). Unlocking lyme: Myths, truths, and practical solutions for chronic lyme disease. Cary, NC: FirstDoNoHarm Publishing.
81 N. (2021, December 22). Drink water for less pain -- 4 ways drinking water helps. Retrieved April 2, 2022, from https://peerwell.co/blog/drink-water-for-less-pain-4-ways-drinking-water-helps/
82 Water. (2021, July 06). Retrieved April 2, 2022, from shorturl.at/pyUWX.
83 Besedovsky, L., Lange, T., & Born, J. (2011). Sleep and immune function. Pflügers Archiv - European Journal of Physiology, 463(1), 121-137. doi:10.1007/s00424-011-1044-0
84 Liu, Y., Wheaton, A. G., Chapman, D. P., & Croft, J. B. (2013). Sleep duration and chronic diseases among US adults age 45 years and older: Evidence from the 2010 Behavioral Risk Factor Surveillance System. Sleep, 36(10), 1421-1427. doi:10.5665/sleep.3028
85 Butler, T. (2016). The Jarisch–herxheimer reaction after antibiotic treatment of spirochetal infections: A review of recent cases and our understanding of pathogenesis. The American Journal of Tropical Medicine and Hygiene, 96(1), 46-52. doi:10.4269/ajtmh.16-0434
86 Nykytyuk, S., Boyarchuk, O., Klymnyuk, S., & Levenets, S. (2020). The jarisch-herxheimer reaction associated with doxycycline in a patient with lyme arthritis. Reumatologia/Rheumatology, 58(5), 335-338. doi:10.5114/reum.2020.99143
87 Keng, S., Smoski, M. J., & Robins, C. J. (2011). Effects of mindfulness on psychological health: A review of empirical studies. Clinical Psychology Review, 31(6), 1041-1056. doi:10.1016/j.cpr.2011.04.006
88 Merkes, M. (2010). Mindfulness-based stress reduction for people with chronic diseases. Australian Journal of Primary Health, 16(3), 200. doi:10.1071/py09063


Ch. 21: Parasite Protocol

1 Lepczyńska, M., Białkowska, J., Dzika, E., Piskorz-Ogórek, K., & Korycińska, J. (2017). Blastocystis: how do specific diets and human gut microbiota affect its development and pathogenicity?. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 36(9), 1531–1540. https://doi.org/10.1007/s10096-017-2965-0
2 Oliveira, B., Bresciani, K., & Widmer, G. (2019). Deprivation of dietary fiber enhances susceptibility of mice to cryptosporidiosis. PLoS neglected tropical diseases, 13(9), e0007411. https://doi.org/10.1371/journal.pntd.0007411
3 Shea-Donohue, T., Qin, B., & Smith, A. (2017). Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite immunology, 39(5), 10.1111/pim.12422. https://doi.org/10.1111/pim.12422
4 Myles I. A. (2014). Fast food fever: reviewing the impacts of the Western diet on immunity. Nutrition journal, 13, 61. https://doi.org/10.1186/1475-2891-13-61
5 Mohammed, S.E., Kabbashi, A., Koko, W., Ansari, M., & Al-Ghamdi, A. (2017). In vitro activity of some natural honeys against Entamoeba histolytica and Giardia lamblia trophozoites. Saudi Journal of Biological Sciences. 26. 10.1016/j.sjbs.2017.06.004.
6 Kaneda, Y., Torii, M., Tanaka, T., & Aikawa, M. (1991). In vitro effects of berberine sulphate on the growth and structure of Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis. Annals of tropical medicine and parasitology, 85(4), 417–425. https://doi.org/10.1080/00034983.1991.11812586
7 Ghosh, A. K., Bhattacharyya, F. K., & Ghosh, D. K. (1985). Leishmania donovani: amastigote inhibition and mode of action of berberine. Experimental parasitology, 60(3), 404–413. https://doi.org/10.1016/0014-4894(85)90047-5
8 Gupte S. (1975). Use of berberine in treatment of giardiasis. American journal of diseases of children (1960), 129(7), 866. https://doi.org/10.1001/archpedi.1975.02120440082020
9 Subbaiah, T. V., & Amin, A. H. (1967). Effect of berberine sulphate on Entamoeba histolytica. Nature, 215(5100), 527–528. https://doi.org/10.1038/215527a0
10 Abd-Elhamid, T. H., Abdel-Rahman, I., Mahmoud, A. R., Allemailem, K. S., Almatroudi, A., Fouad, S. S., Abdella, O. H., Elshabrawy, H. A., & El-Kady, A. M. (2021). A Complementary Herbal Product for Controlling Giardiasis. Antibiotics (Basel, Switzerland), 10(5), 477. https://doi.org/10.3390/antibiotics10050477
11 Loo, C. S., Lam, N. S., Yu, D., Su, X. Z., & Lu, F. (2017). Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacological research, 117, 192–217. https://doi.org/10.1016/j.phrs.2016.11.012
12 Elfawal, M. A., Towler, M. J., Reich, N. G., Golenbock, D., Weathers, P. J., & Rich, S. M. (2012). Dried whole plant Artemisia annua as an antimalarial therapy. PloS one, 7(12), e52746. https://doi.org/10.1371/journal.pone.0052746
13 de Sousa, D. P., Lima, T. C., & Steverding, D. (2016). Evaluation of Antiparasitc Activity of Mentha crispa Essential Oil, Its Major Constituent Rotundifolone and Analogues against Trypanosoma brucei. Planta medica, 82(15), 1346–1350. https://doi.org/10.1055/s-0042-107082
14 Moraes, M. E., Cunha, G. H., Bezerra, M. M., Fechine, F. V., Pontes, A. V., Andrade, W. S., Frota Bezerra, F. A., Moraes, M. O., & Cavalcanti, P. P. (2012). Efficacy of the Mentha crispa in the treatment of women with Trichomonas vaginalis infection. Archives of gynecology and obstetrics, 286(1), 125–130. https://doi.org/10.1007/s00404-012-2251-4
15 Moraes, M. E., Cunha, G. H., Bezerra, M. M., Fechine, F. V., Pontes, A. V., Andrade, W. S., Frota Bezerra, F. A., Moraes, M. O., & Cavalcanti, P. P. (2012). Efficacy of the Mentha crispa in the treatment of women with Trichomonas vaginalis infection. Archives of gynecology and obstetrics, 286(1), 125–130. https://doi.org/10.1007/s00404-012-2251-4
16 Machado, M., Dinis, A. M., Salgueiro, L., Custódio, J. B., Cavaleiro, C., & Sousa, M. C. (2011). Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure. Experimental parasitology, 127(4), 332 732–739. https://doi.org/10.1016/j.exppara.2011.01.011
17 Ezz Eldin, H. (2019). Potent lethal effect of Syzygium aromaticum essential oil on Blastocystis spp.: An in vitro study. Parasitologists United Journal, 12(1), 61-67. doi: 10.21608/puj.2019.10650.1035
18 Batiha, G. E., Beshbishy, A. M., Tayebwa, D. S., Shaheen, H. M., Yokoyama, N., & Igarashi, I. (2019). Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks and tick-borne diseases, 10(5), 949–958. https://doi.org/10.1016/j.ttbdis.2019.04.016
19 Charitha, V. & J, Dr Adeppa & Malakondaiah, P.. (2017). In vitro anthelmintic activity of Syzygium aromaticum and Melia dubia against Haemonchus contortus of sheep. Indian Journal of Animal Sciences. 87. 968-970.
20 Santoro, G. F., Cardoso, M. G., Guimarães, L. G., Mendonça, L. Z., & Soares, M. J. (2007). Trypanosoma cruzi: activity of essential oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Experimental parasitology, 116(3), 283–290. https://doi.org/10.1016/j.exppara.2007.01.018
21 Alnomasy, S., Al-Awsi, G., Raziani, Y., Albalawi, A. E., Alanazi, A. D., Niazi, M., & Mahmoudvand, H. (2021). Systematic review on medicinal plants used for the treatment of Giardia infection. Saudi journal of biological sciences, 28(9), 5391–5402. https://doi.org/10.1016/j.sjbs.2021.05.069
22 Paveto, C., Güida, M. C., Esteva, M. I., Martino, V., Coussio, J., Flawiá, M. M., & Torres, H. N. (2004). Anti-Trypanosoma cruzi activity of green tea (Camellia sinensis) catechins. Antimicrobial agents and chemotherapy, 48(1), 69–74. https://doi.org/10.1128/AAC.48.1.69-74.2004
23 Fakae, L. B., Stevenson, C. W., Zhu, X. Q., & Elsheikha, H. M. (2020). In vitro activity of Camellia sinensis (green tea) against trophozoites and cysts of Acanthamoeba castellanii. International journal for parasitology. Drugs and drug resistance, 13, 59–72. https://doi.org/10.1016/j.ijpddr.2020.05.001
24 Audomkasok, S., Singpha, W., Chachiyo, S., & Somsak, V. (2014). Antihemolytic Activities of Green Tea, Safflower, and Mulberry Extracts during Plasmodium berghei Infection in Mice. Journal of pathogens, 2014, 203154. https://doi.org/10.1155/2014/203154
25 Sanderson, L., Bartlett, A., & Whitfield, P. J. (2002). In vitro and in vivo studies on the bioactivity of a ginger (Zingiber officinale) extract towards adult schistosomes and their egg production. Journal of helminthology, 76(3), 241–247. https://doi.org/10.1079/JOH2002116
26 El-Melegy, M.A., El-Saify, G.H., Hassab-El-Nabi, S.E. (2006). Evaluation of therapeutic effect of ginger compared to flubendazole on experimental trichinelosis in mice. Egyp J Med Sci. 27(2):25–48.
27 El-Kady, A. M., Al-Megrin, W., Abdel-Rahman, I., Sayed, E., Alshehri, E. A., Wakid, M. H., Baakdah, F. M., Mohamed, K., Elshazly, H., Alobaid, H. M., Qahl, S. H., Elshabrawy, H. A., & Younis, S. S. (2022). Ginger Is a Potential Therapeutic for Chronic Toxoplasmosis. Pathogens (Basel, Switzerland), 11(7), 798. https://doi.org/10.3390/pathogens11070798
28 Abu El Ezz, N.M., Khalil, F.A., Shaapan, R.M. (2011). Therapeutic effect of onion (Allium cepa) and Cinnamon (C. zeylanicum) oils on cryptosporidiosis in experimentally infected mice. Global Veterinaria. 2011;7(2):179–183.
29 Mahmoud, A., Attia, R., Said, S., & Ibraheim, Z. (2014). Ginger and cinnamon: can this household remedy treat giardiasis? Parasitological and histopathological studies. Iranian journal of parasitology, 9(4), 530–540.
30 Williams, A. R., Ramsay, A., Hansen, T. V., Ropiak, H. M., Mejer, H., Nejsum, P., Mueller-Harvey, I., & Thamsborg, S. M. (2015). Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum). Scientific reports, 5, 14791. https://doi.org/10.1038/srep14791
31 Moraes, D., Levenhagen, M. A., Costa-Cruz, J. M., Costa, A. P., Netto, & Rodrigues, R. M. (2017). In vitro efficacy of latex and purified papain from Carica papaya against Strongyloides venezuelensis eggs and larvae. Revista do Instituto de Medicina Tropical de Sao Paulo, 59, e7. https://doi.org/10.1590/S1678-9946201759007
32 Kugo, M., Keter, L., Maiyo, A., Kinyua, J., Ndemwa, P., Maina, G., Otieno, P., & Songok, E. M. (2018). Fortification of Carica papaya fruit seeds to school meal snacks may aid Africa mass deworming programs: a preliminary survey. BMC complementary and alternative medicine, 18(1), 327. https://doi.org/10.1186/s12906-018-2379-2
33 Grzybek, M., Kukula-Koch, W., Strachecka, A., Jaworska, A., Phiri, A. M., Paleolog, J., & Tomczuk, K. (2016). Evaluation of Anthelmintic Activity and Composition of Pumpkin (Cucurbita pepo L.) Seed Extracts-In Vitro and in Vivo Studies. International journal of molecular sciences, 17(9), 1456. https://doi.org/10.3390/ijms17091456
34 Travers, M. A., Florent, I., Kohl, L., & Grellier, P. (2011). Probiotics for the control of parasites: an overview. Journal of parasitology research, 2011, 610769. https://doi.org/10.1155/2011/610769
35 Benson, A., Pifer, R., Behrendt, C. L., Hooper, L. V., & Yarovinsky, F. (2009). Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell host & microbe, 6(2), 187–196. https://doi.org/10.1016/j.chom.2009.06.005
36 Travers, M. A., Florent, I., Kohl, L., & Grellier, P. (2011). Probiotics for the control of parasites: an overview. Journal of parasitology research, 2011, 610769. https://doi.org/10.1155/2011/610769
37 Smith, A. D., Cheung, L., Beshah, E., Shea-Donohue, T., & Urban, J. F., Jr (2013). Selenium status alters the immune response and expulsion of adult Heligmosomoides bakeri worms in mice. Infection and immunity, 81(7), 2546–2553. https://doi.org/10.1128/IAI.01047-12
38 Christine D Thomson, Alexandra Chisholm, Sarah K McLachlan, Jennifer M Campbell, Brazil nuts: an effective way to improve selenium status, The American Journal of Clinical Nutrition, Volume 87, Issue 2, February 2008, Pages 379–384, https://doi.org/10.1093/ajcn/87.2.379
39 Shea-Donohue, T., Qin, B., & Smith, A. (2017). Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite immunology, 39(5), 10.1111/pim.12422. https://doi.org/10.1111/pim.12422
40 Payne, L. G., Koski, K. G., Ortega-Barria, E., & Scott, M. E. (2007). Benefit of vitamin A supplementation on ascaris reinfection is less evident in stunted children. The Journal of nutrition, 137(6), 1455–1459. https://doi.org/10.1093/jn/137.6.1455
41 Payne, L. G., Koski, K. G., Ortega-Barria, E., & Scott, M. E. (2007). Benefit of vitamin A supplementation on ascaris reinfection is less evident in stunted children. The Journal of nutrition, 137(6), 1455–1459. https://doi.org/10.1093/jn/137.6.1455
42 Scott, M. E., & Koski, K. G. (2000). Zinc deficiency impairs immune responses against parasitic nematode infections at intestinal and systemic sites. The Journal of nutrition, 130(5S Suppl), 1412S–20S. https://doi.org/10.1093/jn/130.5.1412S


Ch. 22: Alzheimer’s and Dementia Protocol

1 Alzheimer’s Association. (n.d.). Mild cognitive impairment (MCI). Alzheimer’s Disease and Dementia. Retrieved August 19, 2022, from https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment
2 Alzheimer’s Association. (n.d.). Stages of Alzheimer’s. Alzheimer’s Disease and Dementia. Retrieved August 19, 2022, from https://www.alz.org/alzheimers-dementia/stages
3 Ruan, Y., Tang, J., Guo, X., Li, K., & Li, D. (2018). Dietary Fat Intake and Risk of Alzheimer’s Disease and Dementia: A Meta-Analysis of Cohort Studies. Current Alzheimer research, 15(9), 869–876. https://doi.org/10.2174/1567205015666180427142350
4 Mensink, R. P., & Katan, M. B. (1990). Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. The New England journal of medicine, 323(7), 439–445. https://doi.org/10.1056/
NEJM199008163230703
5 Morris M. C. (2004). Diet and Alzheimer’s disease: what the evidence shows. Med-GenMed: Medscape general medicine, 6(1), 48.
6 Siblerud, R., Mutter, J., Moore, E., Naumann, J., & Walach, H. (2019). A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer’s Disease. International journal of environmental research and public health, 16(24), 5152. https://doi.org/10.3390/ijerph16245152
7 Joseph, J. A., Shukitt-Hale, B., Denisova, N. A., Prior, R. L., Cao, G., Martin, A., Taglialatela, G., & Bickford, P. C. (1998). Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. The Journal of neuroscience: the official journal of the Society for Neuroscience, 18(19), 8047–8055. https://doi.org/10.1523/JNEUROSCI.18-19-08047.1998
8 Guerrero, A. L., Dorado-Martínez, C., Rodriguez, A., Pedroza-Ríos, K., Borgonio-Pérez, G., & Rivas-Arancibia, S. (1999). Effects of vitamin E on ozone-induced memory deficits and lipid peroxidation in rats. Neuroreport, 10(8), 1689–1692. https://doi.org/10.1097/00001756-199906030-00012
9 Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. (2011). Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clinic proceedings, 86(9), 876–884. https://doi.org/10.4065/mcp.2011.0252
10 Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of
Sciences of the United States of America, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108 * Calculate using the Karvonen method, which takes your resting heart rate (heart rate reserve is the difference between your resting and your maximum heart rate) into account
11 Sabia, S., Fayosse, A., Dumurgier, J., van Hees, V. T., Paquet, C., Sommerlad, A., Kivimäki, M., Dugravot, A., & Singh-Manoux, A. (2021). Association of sleep duration in middle and old age with incidence of dementia. Nature communications, 12(1), 2289. https://doi.org/10.1038/s41467-021-22354-2
12 Anderson, J., Hawrylewicz, K., & Grundy, J. G. (2020). Does bilingualism protect against dementia? A meta-analysis. Psychonomic bulletin & review, 27(5), 952–965. https://doi.org/10.3758/s13423-020-01736-5
13 Tennstedt, S. L., & Unverzagt, F. W. (2013). The ACTIVE study: study overview and major findings. Journal of aging and health, 25(8 Suppl), 3S–20S. https://doi.org/10.1177/0898264313518133
14 Innes, K. E., Selfe, T. K., Brundage, K., Montgomery, C., Wen, S., Kandati, S., Bowles, H., Khalsa, D. S., & Huysmans, Z. (2018). Effects of Meditation and Music-Listening on Blood Biomarkers of Cellular Aging and Alzheimer’s Disease in Adults with Subjective Cognitive Decline: An Exploratory Randomized Clinical Trial. Journal of Alzheimer’s disease:
JAD, 66(3), 947–970. https://doi.org/10.3233/JAD-180164. https://pubmed.ncbi.nlm.nih.gov/30320574/
15 Dwivedi M, Dubey N, Pansari AJ, Bapi RS, Das M, Guha M, Banerjee R, Pramanick G, Basu J, Ghosh A. Effects of Meditation on Structural Changes of the Brain in Patients with Mild Cognitive Impairment or Alzheimer’s Disease Dementia. Front Hum Neurosci. 2021 Nov 12;15:728993. doi: 10.3389/fnhum.2021.728993. PMID: 34867239; PMCID:
PMC8633496. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633496/
16 Nguyen, T. T., Ta, Q., Nguyen, T., Nguyen, T., & Giau, V. V. (2020). Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. International journal of molecular sciences, 21(9), 3165. https://doi.org/10.3390/ijms21093165
17 Lodeiro, M., Ibáñez, C., Cifuentes, A., Simó, C., & Cedazo-Mínguez, Á. (2014). Decreased cerebrospinal fluid levels of L-carnitine in non-apolipoprotein E4 carriers at early stages of Alzheimer’s disease. Journal of Alzheimer’s disease: JAD, 41(1), 223–232. https://doi.org/10.3233/JAD-132063
18 Pennisi, M., Lanza, G., Cantone, M., D’Amico, E., Fisicaro, F., Puglisi, V., Vinciguerra, L., Bella, R., Vicari, E., & Malaguarnera, G. (2020). Acetyl-L-Carnitine in Dementia and Other Cognitive Disorders: A Critical Update. Nutrients, 12(5), 1389. https://doi.org/10.3390/nu12051389
19 Malaguarnera, M., Cammalleri, L., Gargante, M. P., Vacante, M., Colonna, 333 V., & Motta, M. (2007). L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: a randomized and controlled clinical trial. The American journal of clinical nutrition, 86(6), 1738–1744. https://doi.org/10.1093/ajcn/86.5.1738
20 Malaguarnera, M., Gargante, M. P., Cristaldi, E., Colonna, V., Messano, M., Koverech, A., Neri, S., Vacante, M., Cammalleri, L., & Motta, M. (2008). Acetyl L-carnitine (ALC) treatment in elderly patients with fatigue. Archives of gerontology and geriatrics, 46(2), 181–190. https://doi.org/10.1016/j.archger.2007.03.012
21 Alvarez-Sabín, J., & Román, G. C. (2011). Citicoline in vascular cognitive impairment and vascular dementia after stroke. Stroke, 42(1 Suppl), S40–S43. https://doi.org/10.1161/STROKEAHA.110.606509
22 Littlejohns, T. J., Henley, W. E., Lang, I. A., Annweiler, C., Beauchet, O., Chaves, P. H., Fried, L., Kestenbaum, B. R., Kuller, L. H., Langa, K. M., Lopez, O. L., Kos, K., Soni, M., & Llewellyn, D. J. (2014). Vitamin D and the risk of dementia and Alzheimer disease. Neurology, 83(10), 920–928. https://doi.org/10.1212/WNL.0000000000000755
23 Shine, B., McKnight, R. F., Leaver, L., & Geddes, J. R. (2015). Long-term effects of lithium on renal, thyroid, and parathyroid function: a retrospective analysis of laboratory data. Lancet (London, England), 386(9992), 461–468. https://doi.org/10.1016/S0140-6736(14)61842-0
24 Memon, A., Rogers, I., Fitzsimmons, S., Carter, B., Strawbridge, R., Hidalgo-Mazzei, D., & Young, A. H. (2020). Association between naturally occurring lithium in drinking water and suicide rates: systematic review and meta-analysis of ecological studies. The British journal of psychiatry: the journal of mental science, 217(6), 667–678. https://doi.
org/10.1192/bjp.2020.128
25 Nunes, M. A., Viel, T. A., & Buck, H. S. (2013). Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Current Alzheimer research, 10(1), 104–107. https://doi.org/10.2174/1567205011310010014
26 Haussmann, R., Noppes, F., Brandt, M. D., Bauer, M., & Donix, M. (2021). Lithium: A therapeutic option in Alzheimer’s disease and its prodromal stages?. Neuroscience letters, 760, 136044. https://doi.org/10.1016/j.neulet.2021.136044
27 Thomas, J., Thomas, C. J., Radcliffe, J., & Itsiopoulos, C. (2015). Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease. BioMed research international, 2015, 172801. https://doi.
org/10.1155/2015/172801
28 Ajith T. A. (2018). A Recent Update on the Effects of Omega-3 Fatty Acids in Alzheimer’s Disease. Current clinical pharmacology, 13(4), 252–260. https://doi.org/10.2174/1574884713666180807145648
29 Arora, K., Green, M., & Prakash, S. (2020). The Microbiome and Alzheimer’s Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Frontiers in bioengineering and biotechnology, 8, 537847. https://doi.org/10.3389/fbioe.2020.537847
30 Refsum, H., & Smith, A. D. (2003). Low vitamin B-12 status in confirmed Alzheimer’s disease as revealed by serum holotranscobalamin. Journal of neurology, neurosurgery, and psychiatry, 74(7), 959–961. https://doi.org/10.1136/jnnp.74.7.959
31 Health Quality Ontario (2013). Vitamin B12 and cognitive function: an evidence-based analysis. Ontario health technology assessment series, 13(23), 1–45.
32 Health Quality Ontario (2013). Vitamin B12 and cognitive function: an evidence-based analysis. Ontario health technology assessment series, 13(23), 1–45.
33 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.
v15.i6.30
34 Deshmukh, S., Sridhar, K., & Gupta, M.K. (2021). Hericium erinaceus -A Rich Source of Diverse Bioactive Metabolites. Fungal Biotec. 1. 10-38. 10.5943/FunBiotec/1/2/2. https://www.researchgate.net/publication/355143838
35 Kuo, H. C., Lu, C. C., Shen, C. H., Tung, S. Y., Hsieh, M. C., Lee, K. C., Lee, L. Y., Chen, C. C., Teng, C. C., Huang, W. S., Chen, T. C., & Lee, K. F. (2016). Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade. Journal of translational medicine, 14, 78.
https://doi.org/10.1186/s12967-016-0831-y (Retraction published J Transl Med. 2021 Feb 15;19(1):67)
36 Mori, K., Obara, Y., Moriya, T., Inatomi, S., & Nakahata, N. (2011). Effects of Hericium erinaceus on amyloid β (25-35) peptide-induced learning and memory deficits in mice. Biomedical research (Tokyo, Japan), 32(1), 67–72. https://doi.org/10.2220/biomedres.32.67
37 Brandalise, F., Cesaroni, V., Gregori, A., Repetti, M., Romano, C., Orrù, G., Botta, L., Girometta, C., Guglielminetti, M. L., Savino, E., & Rossi, P. (2017). Dietary Supplementation of Hericium erinaceus Increases Mossy Fiber-CA3 Hippocampal Neurotransmission and Recognition Memory in Wild-Type Mice. Evidence-based complementary and alternative medicine: eCAM, 2017, 3864340. https://doi.org/10.1155/2017/3864340
38 Mori, K., Obara, Y., Moriya, T., Inatomi, S., & Nakahata, N. (2011). Effects of Hericium erinaceus on amyloid β (25-35) peptide-induced learning and memory deficits in mice. Biomedical research (Tokyo, Japan), 32(1), 67–72. https://doi.org/10.2220/biomedres.32.67
39 Mori, K., Kikuchi, H., Obara, Y., Iwashita, M., Azumi, Y., Kinugasa, S., Inatomi, S., Oshima, Y., & Nakahata, N. (2010). Inhibitory effect of hericenone B from Hericium erinaceus on collagen-induced platelet aggregation. Phytomedicine: international journal of phytotherapy and phytopharmacology, 17(14), 1082–1085. https://doi.org/10.1016/j.phymed.2010.05.004
40 Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology, 156(4),
481–484. https://doi.org/10.1007/s002130100815
41 Abdul Manap, A. S., Vijayabalan, S., Madhavan, P., Chia, Y. Y., Arya, A., Wong, E. H., Rizwan, F., Bindal, U., & Koshy, S. (2019). Bacopa monnieri, a Neuroprotective Lead in Alzheimer Disease: A Review on Its Properties, Mechanisms of Action, and Preclinical and Clinical Studies. Drug target insights, 13, 1177392819866412. https://doi.org/10.1177/1177392819866412
42 EghbaliFeriz, S., Taleghani, A., & Tayarani-Najaran, Z. (2018). Central nervous system diseases and Scutellaria: a review of current mechanism studies. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 102, 185–195. https://doi.org/10.1016/j.biopha.2018.03.021
43 Saenghong, N., Wattanathorn, J., Muchimapura, S., Tongun, T., Piyavhatkul, N., Banchonglikitkul, C., & Kajsongkram, T. (2012). Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women. Evidence-based complementary and alternative medicine: eCAM, 2012, 383062. https://doi.org/10.1155/2012/383062
44 Saenghong, N., Wattanathorn, J., Muchimapura, S., Tongun, T., Piyavhatkul, N., Banchonglikitkul, C., & Kajsongkram, T. (2012). Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women. Evidence-based complementary and alternative medicine: eCAM, 2012, 383062. https://doi.org/10.1155/2012/383062
45 Zhang, H. F., Huang, L. B., Zhong, Y. B., Zhou, Q. H., Wang, H. L., Zheng, G. Q., & Lin, Y. (2016). An Overview of Systematic Reviews of Ginkgo biloba Extracts for Mild Cognitive Impairment and Dementia. Frontiers in aging neuroscience, 8, 276. https://doi.org/10.3389/fnagi.2016.00276
46 Farhana, K. M., Malueka, R. G., Wibowo, S., & Gofir, A. (2016). Effectiveness of Gotu Kola Extract 750 mg and 1000 mg Compared with Folic Acid 3 mg in Improving Vascular Cognitive Impairment after Stroke. Evidence-based complementary and alternative medicine: eCAM, 2016, 2795915. https://doi.org/10.1155/2016/2795915
47 Uddin, M. S., Mamun, A. A., Hossain, M. S., Akter, F., Iqbal, M. A., & Asaduzzaman, M. (2016). Exploring the Effect of Phyllanthus emblica L. on Cognitive Performance, Brain Antioxidant Markers and Acetylcholinesterase Activity in Rats: Promising Natural Gift for the Mitigation of Alzheimer’s Disease. Annals of neurosciences, 23(4), 218–229.
https://doi.org/10.1159/000449482
48 Huang, S., Mao, J., Ding, K., Zhou, Y., Zeng, X., Yang, W., Wang, P., Zhao, C., Yao, J., Xia, P., & Pei, G. (2017). Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer’s Disease. Stem cell reports, 8(1), 84–94. https://doi.org/10.1016/j.stemcr.2016.12.007
49 Bhardwaj, N., Katyal, P., & Sharma, A. K. (2014). Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent patents on inflammation & allergy drug discovery, 8(2), 104–117. https://doi.org/10.2174/1872213x08666140619110657
50 Bhardwaj, N., Katyal, P., & Sharma, A. K. (2014). Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent patents on inflammation & allergy drug discovery, 8(2), 104–117. https://doi.org/10.2174/1872213x08666140619110657
51 Mishra, S., & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Annals of Indian Academy of Neurology, 11(1), 13–19. https://doi.org/10.4103/0972-2327.40220
52 Sarker, M. R., & Franks, S. F. (2018). Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. GeroScience, 40(2), 73–95. https://doi.org/10.1007/s11357-018-0017-z


Ch. 23: Anxiety and Stress Protocol

1 McLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. Journal of Psychiatric Research, 45(8), 1027–1035. https://doi.org/10.1016/j.jpsychires. 2011.03.006
2 Griffin JB JR. Anxiety. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd ed. Boston: Butterworths; 1990. Chapter 202. PMID: 21250157
3 Penninx, B. W. J. H., Pine, D. S., Holmes, E. A., & Reif, A. (2021). Anxiety disorders. The Lancet, 397(10277), 914–927. https://doi.org/10.1016/s0140-6736(21)00359-7
4 Burns, D. D. (2007). When panic attacks: The new, drug-free anxiety therapy that can change your life. Morgan Road Books
5 Shin, L. M., & Liberzon, I. (2009). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology, 35(1), 169–191. https://doi.org/10.1038/npp.2009.83
6 Sathyanarayana Rao, T. S., Asha, M. R., Ramesh, B. N., & Jagannatha Rao, K. S. (2008). Understanding nutrition, depression and mental illnesses. Indian Journal of Psychiatry, 50(2), 77. https://doi.org/10.4103/0019-5545.42391
7 Liberzon, I., Duval, E., & Javanbakht, A. (2015). Neural circuits in anxiety and stress disorders: A focused review. Therapeutics and Clinical Risk Management, 115. https://doi.org/10.2147/tcrm.s48528
8 Rogers, M. P., Warshaw, M. G., Goisman, R. M., Goldenberg, I., Rodriguez-Villa, F., Mallya,
G., Freeman, S. A., & Keller, M. B. (1999). Comparing primary and secondary generalized anxiety disorder in a long-term naturalistic study of anxiety disorders. Depression and Anxiety, 10(1), 1–7. https://doi.org/10.1002/(sici)1520-6394(1999)10:1<1:aidda1>3.0.co;2-9
9 Bystritsky, A., Hovav, S., Sherbourne, C., Stein, M. B., Rose, R. D., Campbell-Sills, L., Golinelli, D., Sullivan, G., Craske, M. G., & Roy-Byrne, P. P. (2012). Use of complementary and alternative medicine in a large sample of anxiety patients. Psychosomatics, 53(3), 266–272. https://doi.org/10.1016/j.psym.2011.11.009
10 Kemp, C. G., Johnson, L. C. M., Sagar, R., Poongothai, S., Tandon, N., Anjana, R. M., 334 Aravind, S., Sridhar, G. R., Patel, S. A., Emmert-Fees, K., Rao, D., Narayan, K. M. V., Mohan, V., Ali, M. K., & Chwastiak, L. A. (2022). Effect of a collaborative care model on anxiety symptoms among patients with depression and diabetes in India: The Independent
Randomized Clinical Trial. General Hospital Psychiatry, 74, 39–45. https://doi.org/10.1016/j.genhosppsych.2021.11.003
11 Liao, L.-ying, He, Y.-fan, Li, L., Meng, H., Dong, Y.-mao, Yi, F., & Xiao, P.-gen. (2018). A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chinese Medicine, 13(1). https://doi.org/10.1186/s13020-018-0214-9
12 Singh, N., Bhalla, M., De Jager, P., & Gilca, M. (2011). An overview on ashwagandha: A rasayana (rejuvenator) of ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5S). https://doi.org/10.4314/ajtcam.v8i5s.9
13 Kamal, H. I., Patel, K., Brdak, A., Heffernan, J., & Ahmad, N. (2022). Ashwagandha as a unique cause of thyrotoxicosis presenting with supraventricular tachycardia. Cureus. https://doi.org/10.7759/cureus.23494
14 Petre, A. (2018, September 1). Ashwagandha dosage: How much should you take per day? Healthline. Retrieved June 17, 2022, from https://www.healthline.com/nutrition/ashwagandha-dosage
15 Skelley, J. W., Deas, C. M., Curren, Z., & Ennis, J. (2020). Use of cannabidiol in anxiety and anxiety-related disorders. Journal of the American Pharmacists Association, 60(1), 253–261. https://doi.org/10.1016/j.japh.2019.11.008
16 Blessing, E. M., Steenkamp, M. M., Manzanares, J., & Marmar, C. R. (2015). Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics, 12(4), 825–836. https://doi.org/10.1007/s13311-015-0387-1
17 Shannon, S. (2019). Cannabidiol in anxiety and sleep: A large case series. The Permanente Journal, 23. https://doi.org/10.7812/tpp/18-041
18 Crippa, J. A., Derenusson, G. N., Ferrari, T. B., Wichert-Ana, L., Duran, F. L. S., Martin-Santos, R., Simões, M. V., Bhattacharyya, S., Fusar-Poli, P., Atakan, Z., Filho, A. S., Freitas-Ferrari, M. C., McGuire, P. K., Zuardi, A. W., Busatto, G. F., & Hallak, J. E. (2010). Neural basis of anxiolytic effects of cannabidiol (CBD) in Generalized Social Anxiety Disorder:
A preliminary report. Journal of Psychopharmacology, 25(1), 121–130. https://doi.org/10.1177/0269881110379283
19 Johnson, J. R., Burnell-Nugent, M., Lossignol, D., Ganae-Motan, E. D., Potts, R., & Fallon, M. T. (2010). Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC: CBD extract and THC extract in patients with intractable cancer-related pain. Journal of Pain and Symptom Management,
39(2), 167–179. https://doi.org/10.1016/j.jpainsymman.2009.06.008
20 Brent A. Bauer, M. D. (2020, December 18). CBD: Safe and effective? Mayo Clinic. Retrieved June 17, 2022, from https://rb.gy/soyiiq.
21 Linares, I. M., Zuardi, A. W., Pereira, L. C., Queiroz, R. H., Mechoulam, R., Guimarães, F. S., & Crippa, J. A. (2019). Cannabidiol presents an inverted U-shaped dose-response curve in a simulated public speaking test. Brazilian Journal of Psychiatry, 41(1), 9–14. https://doi.org/10.1590/1516-4446-2017-0015
22 Mao, J. J., Xie, S. X., Keefe, J. R., Soeller, I., Li, Q. S., & Amsterdam, J. D. (2016). Long-term chamomile (Matricaria Chamomilla L.) treatment for generalized anxiety disorder: A randomized clinical trial. Phytomedicine, 23(14), 1735–1742. https://doi.org/10.1016/j.phymed.2016.10.012
23 Chang, S.-M., & Chen, C.-H. (2015). Effects of an intervention with drinking chamomile tea on sleep quality and depression in sleep disturbed postnatal women: A randomized controlled trial. Journal of Advanced Nursing, 72(2), 306–315. https://doi.org/10.1111/jan.12836
24 Cohen, M. M. (2014). Tulsi - Ocimum sanctum: A herb for all reasons. Journal of Ayurveda and Integrative Medicine, 5(4), 251. https://doi.org/10.4103/0975-9476.146554
25 Jamshidi, N., & Cohen, M. M. (2017). The clinical efficacy and safety of tulsi in humans: A systematic review of the literature. Evidence-Based Complementary and Alternative Medicine, 2017, 1–13. https://doi.org/10.1155/2017/9217567
26 RxList. (2021, June 11). Holy basil: Health benefits, side effects, uses, Dose & precautions. RxList. Retrieved June 17, 2022, from https://www.rxlist.com/holy_basil/supplements.htm
27 Awad, R., Levac, D., Cybulska, P., Merali, Z., Trudeau, V. L., & Arnason, J. T. (2007). Effects of traditionally used anxiolytic botanicals on enzymes of the γ-aminobutyric acid (GABA) systemthis article is one of a selection of papers published in this special issue (part 1 of 2) on the safety and efficacy of natural health products. Canadian Journal of Physiology and Pharmacology, 85(9), 933–942. https://doi.org/10.1139/y07-083
28 Franco, L., Sánchez, C., Bravo, R., Rodriguez, A., Barriga, C., & Juánez, J. (2012). The sedative effects of hops (humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiologica Hungarica, 99(2), 133–139. https://doi.org/10.1556/aphysiol.99.2012.2.6
29 Carballido, E., & Editorial. (2022, January 3). Hop contraindications. Botanical online. Retrieved June 17, 2022, from https://www.botanical-online.com/en/medicinal-plants/hop-contraindications
30 Kava Kava. Mount Sinai Health System. (n.d.). Retrieved June 27, 2022, from https://www.mountsinai.org/health-library/herb/kava-kava
31 Piper methysticum (kava kava). Altern Med Rev. 1998 Dec;3(6):458-60. PMID:9855570.
32 Feltenstein, M. W., Lambdin, L. C., Ganzera, M., Ranjith, H., Dharmaratne, W., Nanayakkara N. P., Khan, I. A., & Sufka, K. J. (2003). Anxiolytic properties ofPiper methysticumextract samples and fractions in the chick social-separation-stress procedure. Phytotherapy Research, 17(3), 210–216. https://doi.org/10.1002/ptr.1107
33 Singh, Y. N. (n.d.). An introduction to kava piper methysticum. Kava, 7–15. https://doi.org/10.1201/9781420023374-3
34 Norton, S. A., & Ruze, P. (1994). Kava Dermopathy. Journal of the American Academy of Dermatology, 31(1), 89–97. https://doi.org/10.1016/s0190-9622(94)70142-3
35 Kava uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.). Retrieved June 17, 2022, from https://www.drugs.com/npp/kava.html
36 Yap, W. S., Dolzhenko, A. V., Jalal, Z., Hadi, M. A., & Khan, T. M. (2019). Efficacy and safety of lavender essential oil (Silexan) capsules among patients suffering from anxiety disorders: A network meta-analysis. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-54529-9
37 Woelk, H., & Schläfke, S. (2010). A multi-center, double-blind, randomised study of the lavender oil preparation Silexan in comparison to lorazepam for generalized anxiety disorder. Phytomedicine, 17(2), 94–99. https://doi.org/10.1016/j.phymed.2009.10.006
38 Koulivand, P. H., Khaleghi Ghadiri, M., & Gorji, A. (2013). Lavender and the nervous system. Evidence-Based Complementary and Alternative Medicine, 2013, 1–10. https://doi.org/10.1155/2013/681304
39 Woelk, H., & Schläfke, S. (2010). A multi-center, double-blind, randomised study of the lavender oil preparation Silexan in comparison to lorazepam for generalized anxiety disorder. Phytomedicine, 17(2), 94–99. https://doi.org/10.1016/j.phymed.2009.10.006
40 Valerian root and lemon balm extracts - nursingcenter.com. (n.d.). Retrieved June 15, 2022, from https://rb.gy/0igdht.
41 Lemon Balm. Mount Sinai Health System. (n.d.). Retrieved June 17, 2022, from https://www.mountsinai.org/health-library/herb/lemon-balm
42 Lemon Balm uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.). Retrieved June 17, 2022, from https://www.drugs.com/npp/lemon-balm.html
43 Nagano, M., Shimizu, K., Kondo, R., Hayashi, C., Sato, D., Kitagawa, K., & Ohnuki, K. (2010). Reduction of depression and anxiety by 4 weeks Hericium Erinaceus Intake. Biomedical Research, 31(4), 231–237. https://doi.org/10.2220/biomedres.31.231
44 Li, T.-J., Lee, T.-Y., Lo, Y., Lee, L.-Y., Li, I.-C., Chen, C.-C., & Chang, F.-C. (2021). Hericium erinaceus mycelium ameliorate anxiety induced by continuous sleep disturbance in vivo. BMC Complementary Medicine and Therapies, 21(1). https://doi.org/10.1186/s12906-021-03463-3
45 WebMD. (n.d.). Lion’s Mane Mushroom: Overview, uses, side effects, precautions, interactions, dosing and reviews. WebMD. Retrieved June 17, 2022, from https://www.webmd.com/vitamins/ai/ingredientmono-1536/lions-mane-mushroom
46 Lion’s mane mushroom uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.). Retrieved June 16, 2022, from https://www.drugs.com/npp/lion-s-manemushroom.html
47 Kim, M., Lim, H.-S., Lee, H.-H., & Kim, T.-H. (2017). Role identification of passiflora incarnata linnaeus: A mini review. Journal of Menopausal Medicine, 23(3), 156. https://doi.org/10.6118/jmm.2017.23.3.156
48 Janda, K., Wojtkowska, K., Jakubczyk, K., Antoniewicz, J., & Skonieczna-Żydecka, K. (2020). Passiflora incarnata in neuropsychiatric disorders—a systematic review. Nutrients, 12(12), 3894. https://doi.org/10.3390/nu12123894
49 Guerrero, F. A., & Medina, G. M. (2017). Effect of a medicinal plant (passiflora incarnata L) on sleep. Sleep Science, 10(3), 96–100. https://doi.org/10.5935/1984-0063.20170018
50 McMillen, M. (n.d.). Passionflower: Uses and risks. WebMD. Retrieved June 17, 2022, from https://rb.gy/rauyz1.
51 RxList. (2021, June 11). Passion flower: Health benefits, side effects, uses, Dose & precautions. RxList. Retrieved June 17, 2022, from https://www.rxlist.com/passion_flower/supplements.htm
52 Singh, R., Dhingra, G. S., & Shri, R. (2016). Evaluation of antianxiety potential of four ganoderma (agaricomycetes) species from India in mice. International Journal of Medicinal Mushrooms, 18(11), 991–998. https://doi.org/10.1615/intjmedmushrooms.v18.i11.40
53 Hossen, S. M., Islam, M. J., Hossain, M. R., Barua, A., Uddin, M. G., & Emon, N. U. (2021). CNS anti-depressant, anxiolytic and analgesic effects of ganoderma applanatum (mushroom) along with ligand-receptor binding screening provide new insights: Multi-disciplinary approaches. Biochemistry and Biophysics Reports, 27, 101062. https://doi.org/10.1016/j.bbrep.2021.101062
54 WebMD. (n.d.). Reishi Mushroom: Overview, uses, side effects, precautions, interactions, dosing and reviews. WebMD. Retrieved June 17, 2022, from https://rb.gy/0dbesk.
55 Reishi Mushroom uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.). Retrieved June 17, 2022, from https://www.drugs.com/npp/reishi-mushroom.html
56 Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: A systematic review. BMC Complementary and Alternative Medicine, 12(1). https://doi.org/10.1186/1472-6882-12-70
57 Mao, J. J., Xie, S. X., Zee, J., Soeller, I., Li, Q. S., Rockwell, K., & Amsterdam, J. D. (2015). Rhodiola rosea versus sertraline for major depressive disorder: A randomized placebo-controlled trial. Phytomedicine, 22(3), 394–399. https://doi.org/10.1016/j.phymed.2015.01.010
58 Williams, T. D., Langley, H. N., Roberson, C. C., Rogers, R. R., & Ballmann, C. G. (2021). Effects of short-term golden root extract (rhodiola rosea) supplementation on resistance exercise performance. International Journal of Environmental Research and Public Health, 18(13), 6953. https://doi.org/10.3390/ijerph18136953 335
59 Mattioli, L., Titomanlio, F., & Perfumi, M. (2012). Effects of a rhodiola rosea L. Extract on the acquisition, expression, extinction, and reinstatement of morphine-induced conditioned place preference in mice. Psychopharmacology, 221(2), 183–193. https://doi.org/10.1007/s00213-012-2686-0
60 Rhodiola rosea. Mental Health America. (n.d.). Retrieved June 17, 2022, from https://www.mhanational.org/rhodiola-rosea
61 Edwards, D., Heufelder, A., & Zimmermann, A. (2012). Therapeutic effects and safety of rhodiola rosea extract WS® 1375 in subjects with life-stress symptoms - results of an open-label study. Phytotherapy Research, 26(8), 1220–1225. https://doi.org/10.1002/ptr.3712
62 Scutellaria lateriflora L. (2013). Natural Compounds, 59–59. https://doi.org/10.1007/978-1-4614-0535-1_185
63 Brock, C., Whitehouse, J., Tewfik, I., & Towell, T. (2013). American skullcap (scutellaria lateriflora): A randomised, double-blind placebo-controlled crossover study of its effects on mood in healthy volunteers. Phytotherapy Research, 28(5), 692–698. https://doi.org/10.1002/ptr.5044
64 Brock, C., Whitehouse, J., Tewfik, I., & Towell, T. (2013). American skullcap (scutellaria lateriflora): A randomised, double-blind placebo-controlled crossover study of its effects on mood in healthy volunteers. Phytotherapy Research, 28(5), 692–698. https://doi.org/10.1002/ptr.5044
65 Skullcap. Mount Sinai Health System. (n.d.). Retrieved June 27, 2022, from https:// www.mountsinai.org/health-library/herb/skullcap
66 SCULLCAP uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.). Retrieved June 20, 2022, from https://www.drugs.com/npp/scullcap.html
67 H;, P. B. N. (n.d.). St. John’s wort. National Center for Biotechnology Information. Retrieved June 17, 2022, from https://pubmed.ncbi.nlm.nih.gov/32491397/
68 Butterweck, V. (2003). Mechanism of action of St John???s wort in depression. CNS Drugs, 17(8), 539–562. https://doi.org/10.2165/00023210-200317080-00001
69 Davidson, J. R., & Connor, K. M. (2001). St. john’s wort in generalized anxiety disorder: Three case reports. Journal of Clinical Psychopharmacology, 21(6), 635–636. https://doi.org/10.1097/00004714-200112000-00026
70 Markowitz, J. S. (2003). Effect of st john’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA, 290(11), 1500. https://doi.org/10.1001/jama.290.11.1500
71 Dannawi, M. (2002). Possible serotonin syndrome after combination of buspirone and St John’s wort. Journal of Psychopharmacology, 16(4), 401–401. https://doi.org/10.1177/026988110201600420
72 Nicolussi, S., Drewe, J., Butterweck, V., & Meyer zu Schwabedissen, H. E. (2020). Clinical relevance of St. John’s wort drug interactions revisited. British Journal of Pharmacology, 177(6), 1212–1226. https://doi.org/10.1111/bph.14936
73 Trauner, G., Khom, S., Baburin, I., Benedek, B., Hering, S., & Kopp, B. (2008). Modulation of GABAa receptors by valerian extracts is related to the content of valerenic acid. Planta Medica, 74(1), 19–24. https://doi.org/10.1055/s-2007-993761
74 Andreatini, R., Sartori, V. A., Seabra, M. L., & Leite, J. R. (2002). Effect of valepotriates (valerian extract) in generalized anxiety disorder: A randomized placebo-controlled pilot study. Phytotherapy Research, 16(7), 650–654. https://doi.org/10.1002/ptr.1027
75 Poyares, D. R., Guilleminault, C., Ohayon, M. M., & Tufik, S. (2002). Can valerian improve the sleep of insomniacs after benzodiazepine withdrawal? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 26(3), 539–545. https://doi.org/10.1016/s0278-5846(01)00305-0
76 Brent A. Bauer, M. D. (2018, February 15). Valerian for insomnia? maybe. Mayo Clinic. Retrieved June 17, 2022, from https://rb.gy/ktm7l8.
77 Cafasso, J. (2019, March 8). How much valerian root can I take safely? Healthline. Retrieved June 17, 2022, from https://www.healthline.com/health/food-nutrition/valerian-root
78 Vora, E. (2022). The Anatomy of Anxiety: Understanding and overcoming the body’s fear response. Orion Spring.
79 Hou, Y.-Y., Ojo, O., Wang, L.-L., Wang, Q., Jiang, Q., Shao, X.-Y., & Wang, X.-H. (2018). A randomized controlled trial to compare the effect of peanuts and almonds on the cardio-metabolic and inflammatory parameters in patients with type 2 diabetes mellitus. Nutrients, 10(11), 1565. https://doi.org/10.3390/nu10111565
80 Ferretti, F., & Mariani, M. (2017). Simple vs. complex carbohydrate dietary patterns and the global overweight and obesity pandemic. International Journal of Environmental Research and Public Health, 14(10), 1174. https://doi.org/10.3390/ijerph14101174
81 Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J. F., & Dinan, T. G. (2014). Minireview: Gut microbiota: The neglected endocrine organ. Molecular Endocrinology, 28(8), 1221–1238. https://doi.org/10.1210/me.2014-1108
82 Mayer, E. A. (2011). Gut feelings: The emerging biology of Gut–Brain Communication. Nature Reviews Neuroscience, 12(8), 453–466. https://doi.org/10.1038/nrn3071
83 Carpenter, D. S. (2012, September). That gut feeling. Monitor on Psychology. Retrieved June 20, 2022, from https://rb.gy/vitxn2.
84 The human microbiota in health and disease - molmed.nl. (n.d.). Retrieved June 21, 2022, from https://www.molmed.nl/uploads/abstracts/1639/John%20Hays%20Microbiota%20Cursus%20Presentatie%2022.08.2018.3%20USE.pdf
85 Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., Jafari, P., Akbari, H., Taghizadeh, M., Memarzadeh, M. R., Asemi, Z., & Esmaillzadeh, A. (2016). Clinical and metabolic response to probiotic administration in patients with major depressive
disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 32(3), 315–320. https://doi.org/10.1016/j.nut.2015.09.003
86 Willcox, B. J., & Willcox, D. C. (2013). Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa. Current Opinion in Clinical Nutrition and Metabolic Care, 1.https://doi.org/10.1097/mco.0000000000000019
87 Vreeburg, S. A., Zitman, F. G., van Pelt, J., DeRijk, R. H., Verhagen, J. C., van Dyck, R., Hoogendijk, W. J., Smit, J. H., & Penninx, B. W. (2010). Salivary cortisol levels in persons with and without different anxiety disorders. Psychosomatic Medicine, 72(4), 340–347. https://doi.org/10.1097/psy.0b013e3181d2f0c8
88 Kalant, H. (1962). Book review: Alcohol and caffeine. A study of their psychological effects. Canadian Psychiatric Association Journal, 7(5), 273–274. https://doi.org/10.1177/070674376200700511
89 Wang, H. R., Woo, Y. S., & Bahk, W.-M. (2015). Caffeine-induced psychiatric manifestations. International Clinical Psychopharmacology, 30(4), 179–182. https://doi.org/10.1097/yic.0000000000000076
90 Juliano, L. M., & Griffiths, R. R. (2004). A critical review of caffeine withdrawal: Empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology, 176(1), 1–29. https://doi.org/10.1007/s00213-004-2000-x
91 Nelson, M., & Ogden, J. (2008). An exploration of food intolerance in the primary care setting: The general practitioner’s experience. Social Science & Medicine, 67(6), 1038–1045. https://doi.org/10.1016/j.socscimed.2008.05.025
92 Polloni, L., & Muraro, A. (2020). Anxiety and food allergy: A review of the last two decades. Clinical & Experimental Allergy, 50(4), 420–441. https://doi.org/10.1111/cea.13548
93 Arvola, T., & Holmberg-marttila, D. (1999). Benefits and risks of elimination diets. Annals of Medicine, 31(4), 293–298. https://doi.org/10.3109/07853899908995893
94 Harvie, M., & Howell, A. (2017). Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects—a narrative review of human and animal evidence. Behavioral Sciences, 7(4),4. https://doi.org/10.3390/bs7010004
95 John J. Ratey, M. D. (2019, October 24). Can exercise help treat anxiety? Harvard Health. Retrieved June 21, 2022, from https://www.health.harvard.edu/blog/can-exercise-help-treat-anxiety-2019102418096
96 Herbert, C., Meixner, F., Wiebking, C., & Gilg, V. (2020). Regular physical activity, short-term exercise, mental health, and well-being among university students: The results of an online and a laboratory study. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.00509
97 Anderson, E., & Shivakumar, G. (2013). Effects of exercise and physical activity on anxiety. Frontiers in Psychiatry, 4. https://doi.org/10.3389/fpsyt.2013.00027
98 Lago, T. R., Hsiung, A., Leitner, B. P., Duckworth, C. J., Balderston, N. L., Chen, K. Y., Grillon, C., & Ernst, M. (2018). Exercise modulates the interaction between cognition and anxiety in humans. Cognition and Emotion, 33(4), 863–870. https://doi.org/10.1080/02699931.2018.1500445
99 Carlson, C. R., Collins, F. L., Nitz, A. J., Sturgis, E. T., & Rogers, J. L. (1990). Muscle stretching as an alternative relaxation training procedure. Journal of Behavior Therapy and Experimental Psychiatry, 21(1), 29–38. https://doi.org/10.1016/0005-
7916(90)90046-n 100 Brellenthin, A. G., Crombie, K. M., Hillard, C. J., & Koltyn, K. F. (2017). Endocannabinoid and mood responses to exercise in adults with varying activity levels. Medicine & Science in Sports & Exercise, 49(8), 1688–1696. https://doi.org/10.1249/mss.0000000000001276
101 Schoenfeld, T. J., Rada, P., Pieruzzini, P. R., Hsueh, B., & Gould, E. (2013). Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus. Journal of Neuroscience, 33(18), 7770–7777. https://doi.org/10.1523/jneurosci.5352-12.2013
102 Audiffren, M., & André, N. (2019). The exercise–cognition relationship: A virtuous circle. Journal of Sport and Health Science, 8(4), 339–347. https://doi.org/10.1016/j.jshs.2019.03.001
103 Mayo Foundation for Medical Education and Research. (2017, September 27). Depression and anxiety: Exercise eases symptoms. Mayo Clinic. Retrieved June 21, 2022, from https://rb.gy/4gtiez.
104 Hopper, S. I., Murray, S. L., Ferrara, L. R., & Singleton, J. K. (2019). Effectiveness of diaphragmatic breathing for reducing physiological and psychological stress in adults. JBI Database of Systematic Reviews and Implementation Reports, 17(9), 1855–1876. https://doi.org/10.11124/jbisrir-2017-003848
105 Ma, X., Yue, Z.-Q., Gong, Z.-Q., Zhang, H., Duan, N.-Y., Shi, Y.-T., Wei, G.-X., & Li, Y.-F. (2017). The effect of diaphragmatic breathing on attention, negative affect and stress in healthy adults. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00874
106 Lemole, G. M., McLanahan, S. A., McKee, D. L., Spiker, T., Chen, N., & Hyman, M. (2021). Lymph & longevity: The untapped secret to health. Headline.
107 Segerstrom, S. C., & Miller, G. E. (2004). Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychological Bulletin, 130(4), 601–630. https://doi.org/10.1037/0033-2909.130.4.601
108 Hofmann, S. G., & Gómez, A. F. (2017). Mindfulness-based interventions for anxiety and depression. Psychiatric Clinics of North America, 40(4), 739–749. https://doi.org/10.1016/j.psc.2017.08.008
109 Serpa, J. G., Taylor, S. L., & Tillisch, K. (2014). Mindfulness-based stress reduction (MBSR) reduces anxiety, depression, and suicidal ideation in veterans. Medical Care, 336 52(Supplement 5). https://doi.org/10.1097/mlr.0000000000000202
110 Hansen, M. M., Jones, R., & Tocchini, K. (2017). Shinrin-yoku (forest bathing) and nature therapy: A state-of-the-art review. International Journal of Environmental Research and Public Health, 14(8), 851. https://doi.org/10.3390/ijerph14080851
111 Burns, D. D. (2007). When panic attacks: The new, drug-free anxiety therapy that can change your life. Morgan Road Books.
112 Borza, L. (2017). Cognitive-behavioral therapy for generalized anxiety. Dialogues in Clinical Neuroscience, 19(2), 203–208. https://doi.org/10.31887/dcns.2017.19.2/lborza
113 Sussex Publishers. (n.d.). Gratitude. Psychology Today. Retrieved June 21, 2022, from https://www.psychologytoday.com/ca/basics/gratitude
114 Petrocchi, N., & Couyoumdjian, A. (2015). The impact of gratitude on depression and anxiety: The mediating role of criticizing, attacking, and reassuring the self. Self and Identity, 15(2), 191–205. https://doi.org/10.1080/15298868.2015.1095794
115 Cunha, L. F., Pellanda, L. C., & Reppold, C. T. (2019). Positive psychology and gratitude interventions: A randomized clinical trial. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00584
116 Heckendorf, H., Lehr, D., Ebert, D. D., & Freund, H. (2019). Efficacy of an internet and app-based gratitude intervention in reducing repetitive negative thinking and mechanisms of change in the intervention’s effect on anxiety and depression: Results from a randomized controlled trial. Behaviour Research and Therapy, 119, 103415. https://doi.
org/10.1016/j.brat.2019.103415
117 O’Connell, B. H., O’Shea, D., & Gallagher, S. (2017). Feeling thanks and saying thanks: A randomized controlled trial examining if and how socially oriented gratitude journals work. Journal of Clinical Psychology, 73(10), 1280–1300. https://doi.org/10.1002/jclp.22469
118 Goto, Y., Hayasaka, S., Kurihara, S., & Nakamura, Y. (2018). Physical and mental effects of bathing: A randomized intervention study. Evidence-Based Complementary and Alternative Medicine, 2018, 1–5. https://doi.org/10.1155/2018/9521086
119 Ismail, A. A. A., & Ismail, N. A. (2016). Magnesium: A mineral essential for health yet generally underestimated or even ignored. Journal of Nutrition & Food Sciences, 6(4). https://doi.org/10.4172/2155-9600.1000523
120 Boyle, N., Lawton, C., & Dye, L. (2017). The effects of magnesium supplementation on subjective anxiety and stress—a systematic review. Nutrients, 9(5), 429. https://doi.org/10.3390/nu9050429
121 Gröber, U., Werner, T., Vormann, J., & Kisters, K. (2017). Myth or reality—transdermal magnesium? Nutrients, 9(8), 813. https://doi.org/10.3390/nu9080813
122 Rath, L. (n.d.). Epsom salts bath: How to take one, what it does. WebMD. Retrieved June 21, 2022, from https://rb.gy/sjfwa3.
123 Field, T., Field, T., Cullen, C., Largie, S., Diego, M., Schanberg, S., & Kuhn, C. (2008). Lavender bath oil reduces stress and crying and enhances sleep in very young infants. Early Human Development, 84(6), 399–401. https://doi.org/10.1016/j.earlhumdev.2007.10.008
124 Kennedy, D. (2016). B vitamins and the brain: Mechanisms, dose and efficacy—a review. Nutrients, 8(2), 68. https://doi.org/10.3390/nu8020068
125 Mahdavifar, B., Hosseinzadeh, M., Salehi-Abargouei, A., Mirzaei, M., & Vafa, M. (2021). Dietary intake of B vitamins and their association with depression, anxiety, and stress symptoms: A cross-sectional, population-based survey. Journal of Affective Disorders, 288, 92–98. https://doi.org/10.1016/j.jad.2021.03.055
126 Kubala, J. (2022, April 4). B-complex vitamins. Healthline. Retrieved June 23, 2022, from https://www.healthline.com/nutrition/vitamin-b-complex
127 Moritz, B., Schwarzbold, M. L., Guarnieri, R., Diaz, A. P., S Rodrigues, A. L., & Dafre, A. L. (2017). Effects of ascorbic acid on anxiety state and affect in a non-clinical sample. Acta neurobiologiae experimentalis, 77(4), 362–372.
128 Kennedy, D. O., Veasey, R., Watson, A., Dodd, F., Jones, E., Maggini, S., & Haskell, C. F. (2010). Effects of high-dose B vitamin complex with vitamin C and minerals on subjective mood and performance in healthy males. Psychopharmacology, 211(1), 55–68. https://doi.org/10.1007/s00213-010-1870-3
129 Elliott, B. (2019, December 14). Does too much vitamin C cause side effects? Healthline. Retrieved June 28, 2022, from https://www.healthline.com/nutrition/side-effectsof-too-much-vitamin-c#vitamin-c
130 Oliveira, I. J., de Souza, V. V., Motta, V., & Da-Silva, S. L. (2014). Effects of oral vitamin C supplementation on anxiety in students: A double-blind, randomized, placebo-controlled trial. Pakistan Journal of Biological Sciences, 18(1), 11–18. https://doi.org/10.3923/pjbs.2015.11.18
131 Eid, A., Khoja, S., AlGhamdi, S., Alsufiani, H., Alzeben, F., Alhejaili, N., Tayeb, H. O., & Tarazi, F. I. (2019). Vitamin D supplementation ameliorates severity of generalized anxiety disorder (GAD). Metabolic Brain Disease, 34(6), 1781–1786. https://doi.org/10.1007/s11011-019-00486-1
132 Bjarnadottir, A. (2021, February 18). How much vitamin D should you take for optimal health? Healthline. Retrieved June 22, 2022, from https://www.healthline.com/nutrition/how-much-vitamin-d-to-take
133 Hegarty, B., & Parker, G. (2013). Fish oil as a management component for mood disorders – an evolving signal. Current Opinion in Psychiatry, 26(1), 33–40. https://doi.org/10.1097/yco.0b013e32835ab4a7
134 Ohishi, K., Ueno, R., Nishino, S., Sakai, T., & Hayaishi, O. (1988). Increased level of salivary prostaglandins in patients with major depression. Biological Psychiatry, 23(4), 326–334. https://doi.org/10.1016/0006-3223(88)90283-1
135 Gądek-Michalska, A., Tadeusz, J., Rachwalska, P., & Bugajski, J. (2013). Cytokines,prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacological Reports, 65(6), 1655–1662. https://doi.org/10.1016/s1734-1140(13)71527-5
136 Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition, 3(1), 1–7. https://doi.org/10.3945/an.111.000893
137 Gauthier, I., & Nuss, P. (2015). Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatric Disease and Treatment, 165. https://doi.org/10.2147/ndt.s58841
138 Hepsomali, P., Groeger, J. A., Nishihira, J., & Scholey, A. (2020). Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: A systematic review. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00923
139 Byun, J.-I., Shin, Y. Y., Chung, S.-E., & Shin, W. C. (2018). Safety and efficacy of gamma-aminobutyric acid from fermented rice germ in patients with insomnia symptoms: A randomized, double-blind trial. Journal of Clinical Neurology, 14(3), 291. https://doi.org/10.3988/jcn.2018.14.3.291
140 Schmidt, R. W., & Thompson, M. L. (2016). Glycinergic signaling in the human nervous system: An overview of therapeutic drug targets and clinical effects. Mental Health Clinician, 6(6), 266–276. https://doi.org/10.9740/mhc.2016.11.266
141 WebMD. (n.d.). Glycine: Overview, uses, side effects, precautions, interactions, dosing and reviews. WebMD. Retrieved June 23, 2022, from https://www.webmd.com/vitamins/ai/ingredientmono-1072/glycine
142 Cherry, K. (2021, December 11). Can inositol relieve panic and anxiety? Verywell Mind. Retrieved June 23, 2022, from https://www.verywellmind.com/inositol-whatshould-i-know-about-it-89466
143 Palatnik, A., Frolov, K., Fux, M., & Benjamin, J. (2001). Double-blind, controlled, crossover trial of inositol versus fluvoxamine for the treatment of panic disorder. Journal of Clinical Psychopharmacology, 21(3), 335–339. https://doi.org/10.1097/00004714-200106000-00014
144 Levine, J. (1997). Controlled trials of inositol in psychiatry. European Neuropsychopharmacology, 7(2), 147–155. https://doi.org/10.1016/s0924-977x(97)00409-4
145 Lopes Sakamoto, F., Metzker Pereira Ribeiro, R., Amador Bueno, A., & Oliveira Santos, H. (2019). Psychotropic effects of L-Theanine and its clinical properties: From the management of anxiety and stress to a potential use in schizophrenia. Pharmacological Research, 147, 104395. https://doi.org/10.1016/j.phrs.2019.104395
146 Everett, J. M., Gunathilake, D., Dufficy, L., Roach, P., Thomas, J., Upton, D., & Naumovski, N. (2016). Theanine consumption, stress and anxiety in human clinical trials: A systematic review. Journal of Nutrition & Intermediary Metabolism, 4, 41–42. https://doi.org/10.1016/j.jnim.2015.12.308
147 Williams, J. L., Everett, J. M., D’Cunha, N. M., Sergi, D., Georgousopoulou, E. N., Keegan, R. J., McKune, A. J., Mellor, D. D., Anstice, N., & Naumovski, N. (2019). The effects of green tea amino acid L-theanine consumption on the ability to manage stress and anxiety levels: A systematic review. Plant Foods for Human Nutrition, 75(1), 12–23.
https://doi.org/10.1007/s11130-019-00771-5
148 U.S. Department of Health and Human Services. (n.d.). Office of dietary supplements - magnesium. NIH Office of Dietary Supplements. Retrieved June 22, 2022, from https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/
149 Kirkland, A., Sarlo, G., & Holton, K. (2018). The role of magnesium in neurological disorders. Nutrients, 10(6), 730. https://doi.org/10.3390/nu10060730
150 Boyle, N., Lawton, C., & Dye, L. (2017). The effects of magnesium supplementation on subjective anxiety and stress—a systematic review. Nutrients, 9(5), 429. https://doi.org/10.3390/nu9050429
151 Pickering, G., Mazur, A., Trousselard, M., Bienkowski, P., Yaltsewa, N., Amessou, M., Noah, L., & Pouteau, E. (2020). Magnesium status and stress: The Vicious Circle Concept revisited. Nutrients, 12(12), 3672. https://doi.org/10.3390/nu12123672
152 Möhler, H., Polc, P., Cumin, R., Pieri, L., & Kettler, R. (1979). Nicotinamide is a brain constituent with benzodiazepine-like actions. Nature, 278(5704), 563–565. https://doi.org/10.1038/278563a0
153 Niacin - statpearls - NCBI bookshelf. (n.d.). Retrieved June 23, 2022, from https://www.ncbi.nlm.nih.gov/books/NBK541036/
154 Prousky, J. E. (2005). Supplemental Niacinamide Mitigates Anxiety Symptoms. Journal of Orthomolecular Medicine, 20(3), 167–178.
155 Vitellio, P., Chira, A., De Angelis, M., Dumitrascu, D. L., & Portincasa, P. (2020). Probiotics in psychosocial stress and anxiety. A systematic review. Journal of Gastrointestinal and Liver Diseases, 29(1), 77–83. https://doi.org/10.15403/jgld-352
156 Niacin - statpearls - NCBI bookshelf. (n.d.). Retrieved June 23, 2022, from https://www.ncbi.nlm.nih.gov/books/NBK541036/
157 Jakaria, M., Azam, S., Haque, M. E., Jo, S.-H., Uddin, M. S., Kim, I.-S., & Choi, D.-K.
(2019). Taurine and its analogs in neurological disorders: Focus on therapeutic potential
and molecular mechanisms. Redox Biology, 24, 101223. https://doi.org/10.1016/j.
redox.2019.101223
158 Zhang, C. G., & Kim, S.-J. (2007). Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo. Annals of Nutrition and Metabolism, 51(4), 379–386. https://doi.org/10.1159/000107687
159 Walle, G. V. D. (2022, February 1). What is taurine? benefits, side effects, and more. Healthline. Retrieved June 23, 2022, from https://www.healthline.com/nutrition/what-is-taurine#side-effects-precautions
160 WebMD. (n.d.). 5-HTP: Overview, uses, side effects, precautions, interactions, dosing and reviews. WebMD. Retrieved June 23, 2022, from https://www.webmd.com/vitamins/ai/ingredientmono-794/5-htp
161 Maffei, M. E. (2020). 5-hydroxytryptophan (5-HTP): Natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology. International Journal of Molecular Sciences, 22(1), 181. https://doi.org/10.3390/ijms22010181
162 5-hydroxytryptophan (5-HTP). Mount Sinai Health System. (n.d.). Retrieved June 27, 2022, from https://www.mountsinai.org/health-library/supple- 337ment/5-hydroxytryptophan-5htp#:~:text=Taking%205%2DHTP%20with%20dextromethorphan,
a%20condition%20called%20serotonin%20syndrome.
163 Gijsman, H. J., van Gerven, J. M., de Kam, M. L., Schoemaker, R. C., Pieters, M. S., Weemaes, M., de Rijk, R., van der Post, J., & Cohen, A. F. (2002). Placebo-controlled comparison of three dose-regimens of 5-hydroxytryptophan challenge test in healthy volunteers. Journal of Clinical Psychopharmacology, 22(2), 183–189. https://doi.org/10.1097/00004714-200204000-00012
164 Nestadt, P. (2021, October 13). Why aren’t my antidepressants working? Why Aren’t My Antidepressants Working? | Johns Hopkins Medicine. Retrieved June 24, 2022, from https://rb.gy/klbdr8.
165 Vora, E. (2022). The Anatomy of Anxiety: Understanding and overcoming the body’s fear response. Orion Spring.
166 Salim, S., Chugh, G., & Asghar, M. (2012). Inflammation in anxiety. Advances in Protein Chemistry and Structural Biology Volume 88, 1–25. https://doi.org/10.1016/b978-0-12-398314-5.00001-5


Ch. 24: Brain and Nerve Protocol

1 Ackerman S. Discovering the Brain. Washington (DC): National Academies Press (US); 1992. Foreword. Available from: https://www.ncbi.nlm.nih.gov/books/NBK234155/
2 Wang, Y., Pan, Y., & Li, H. (2020). What is Brain Health and why is it important? BMJ, m3683. https://doi.org/10.1136/bmj.m3683
3 World Health Organization. (n.d.). Neurological disorders affect millions globally: Who report. World Health Organization. Retrieved August 23, 2022, from https://www.who.int/news/item/27-02-2007-neurological-disorders-affect-millions-globally-who-report
4 Froestl, W., Muhs, A., & Pfeifer, A. (2012). Cognitive enhancers (nootropics). part 1: Drugs interacting with receptors. Journal of Alzheimer’s Disease, 32(4), 793–887. https://doi.org/10.3233/jad-2012-121186
5 Onaolapo, A. Y., Obelawo, A. Y., & Onaolapo, O. J. (2019). Brain Ageing, cognition and Diet: A review of the emerging roles of food-based Nootropics in mitigating age-related memory decline. Current Aging Science, 12(1), 2–14. https://doi.org/10.2174/1874609812666190311160754
6 Chugh, R. M., Mittal, P., MP, N., Arora, T., Bhattacharya, T., Chopra, H., Cavalu, S., & Gautam, R. K. (2022). Fungal mushrooms: A natural compound with therapeutic applications. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.925387
7 Lai, P.-L., Naidu, M., Sabaratnam, V., Wong, K.-H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, hericium erinaceus (higher basidiomycetes) from Malaysia. International Journal of Medicinal Mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.v15.i6.30
8 Aguiar, S., & Borowski, T. (2013). Neuropharmacological review of the nootropic herb bacopa monnieri. Rejuvenation Research, 16(4), 313–326. https://doi.org/10.1089/rej.2013.1431
9 Mori, K., Inatomi, S., Ouchi, K., Azumi, Y., & Tuchida, T. (2009). Improving effects of the mushroom yamabushitake (hericium erinaceus) on mild cognitive impairment: A double-blind placebo-controlled clinical trial. Phytotherapy Research, 23(3), 367–372. https://doi.org/10.1002/ptr.2634
10 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.v15.i6.30
11 Mori, K., Kikuchi, H., Obara, Y., Iwashita, M., Azumi, Y., Kinugasa, S., Inatomi, S., Oshima, Y., & Nakahata, N. (2010). Inhibitory effect of hericenone B from Hericium erinaceus on collagen-induced platelet aggregation. Phytomedicine: international journal of phytotherapy and phytopharmacology, 17(14), 1082–1085. https://doi.org/10.1016/j.phymed.2010.05.004
12 Song, J., Wang, Y., Teng, M., Cai, G., Xu, H., Guo, H., Liu, Y., Wang, D., & Teng, L. (2015). Studies on the antifatigue activities ofcordyceps militarisfruit body extract in mouse model. Evidence-Based Complementary and Alternative Medicine, 2015, 1–15. https://doi.org/10.1155/2015/174616
13 Yuan, G., An, L., Sun, Y., Xu, G., & Du, P. (2018). Improvement of learning and memory induced by cordyceps polypeptide treatment and the underlying mechanism. Evidence-Based Complementary and Alternative Medicine, 2018, 1–10. https://doi.org/10.1155/2018/9419264
14 Chen, S., Li, Z., Krochmal, R., Abrazado, M., Kim, W., & Cooper, C. B. (2010). Effect of CS-4® (cordyceps sinensis) on exercise performance in healthy older subjects: A double-blind, placebo-controlled trial. The Journal of Alternative and Complementary Medicine, 16(5), 585–590. https://doi.org/10.1089/acm.2009.0226
15 Doukani, K., Selles, A. S. M., & Bouhenni, H. (2021). Melissa officinalis (lemon balm). In Naturally Occurring Chemicals Against Alzheimer’s Disease (pp. 225-241). Academic Press
16 Kamdem, J. P., Adeniran, A., Boligon, A. A., Klimaczewski, C. V., Elekofehinti, O. O., Hassan, W., ... & Athayde, M. L. (2013). Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: Its potential role in neuroprotection. Industrial Crops and Products, 51, 26-34.
17 Eivani, M., & Khosronezhad, N. (2020). Melissa officinalis: a memory enhancer remedy. Physiology and Pharmacology, 24(3), 159-164
18 Eivani, M., & Khosronezhad, N. (2020). Melissa officinalis: a memory enhancer remedy. Physiology and Pharmacology, 24(3), 159-164
19 Bhardwaj, N., Katyal, P., & Sharma, A. K. (2014). Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent patents on inflammation & allergy drug discovery, 8(2), 104–117. https://doi.org/10.2174/1872213x08666140619110657
20 Huang, S., Mao, J., Ding, K., Zhou, Y., Zeng, X., Yang, W., Wang, P., Zhao, C., Yao, J., Xia, P., & Pei, G. (2017). Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer’s Disease. Stem cell reports, 8(1), 84–94. https://doi.org/10.1016/j.stemcr.2016.12.007
21 Liao, L.-ying, He, Y.-fan, Li, L., Meng, H., Dong, Y.-mao, Yi, F., & Xiao, P.-gen. (2018). A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chinese Medicine, 13(1). https://doi.org/10.1186/s13020-018-0214-9
22 Kuboyama, T., Tohda, C., & Komatsu, K. (2005). Neuritic regeneration and synaptic reconstruction induced by withanolide a. British Journal of Pharmacology, 144(7), 961–971. https://doi.org/10.1038/sj.bjp.0706122
23 TOHDA, C. (2008). Overcoming several neurodegenerative diseases by traditional medicines. YAKUGAKU ZASSHI, 128(8), 1159–1167. https://doi.org/10.1248/yakushi.128.1159
24 Petre, A. (2018, September 1). Ashwagandha dosage: How much should you take per day? Healthline. Retrieved June 17, 2022, from https://www.healthline.com/nutrition/ashwagandha-dosage
25 Kamal, H. I., Patel, K., Brdak, A., Heffernan, J., & Ahmad, N. (2022). Ashwagandha as a unique cause of thyrotoxicosis presenting with supraventricular tachycardia. Cureus. https://doi.org/10.7759/cureus.23494
26 Aguiar, S., & Borowski, T. (2013). Neuropharmacological review of the nootropic herb bacopa monnieri. Rejuvenation Research, 16(4), 313–326. https://doi.org/10.1089/rej.2013.1431
27 Nemetchek, M. D., Stierle, A. A., Stierle, D. B., & Lurie, D. I. (2017). The Ayurvedic Plant Bacopa Monnieri inhibits inflammatory pathways in the brain. Journal of Ethnopharmacology, 197, 92–100. https://doi.org/10.1016/j.jep.2016.07.073
28 Kongkeaw, C., Dilokthornsakul, P., Thanarangsarit, P., Limpeanchob, N., & Norman Scholfield, C. (2014). Meta-analysis of randomized controlled trials on cognitive effects of Bacopa Monnieri extract. Journal of Ethnopharmacology, 151(1), 528–535. https://doi.org/10.1016/j.jep.2013.11.008
29 Brimson, J. M., Brimson, S., Prasanth, M. I., Thitilertdecha, P., Malar, D. S., & Tencomnao, T. (2021). The effectiveness of bacopa monnieri (Linn.) wettst. as a nootropic, neuroprotective, or antidepressant supplement: Analysis of the available clinical data. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-80045-2
30 Roger Cohn • May 1, Roger Cohn, Roger Cohn, •, Hurdle, J., Hurdle, J., Marinelli, J., & Marinelli, J. (n.d.). The life story of the oldest tree on Earth. Yale E360. Retrieved August 4, 2022, from https://e360.yale.edu/features/peter_crane_history_of_ginkgo_earths_oldest_tree
31 Nowak, A., Kojder, K., Zielonka-Brzezicka, J., Wróbel, J., Bosiacki, M., Fabiańska, M., Wróbel, M., Sołek-Pastuszka, J., & Klimowicz, A. (2021). The use of ginkgo biloba L. as a neuroprotective agent in the alzheimer’s disease. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.775034
32 Nathan, P. J., Ricketts, E., Wesnes, K., Mrazek, L., Greville, W., & Stough, C. (2002). The acute nootropic effects ofGinkgo biloba in healthy older human subjects: A preliminary investigation. Human Psychopharmacology: Clinical and Experimental, 17(1), 45–49. https://doi.org/10.1002/hup.353
33 Diamond, B. J., & Bailey, M. R. (2013). Ginkgo biloba. Psychiatric Clinics of North America, 36(1), 73–83. https://doi.org/10.1016/j.psc.2012.12.006
34 Brinkhaus, B., Lindner, M., Schuppan, D., & Hahn, E. G. (2000). Chemical, pharmacological and clinical profile of the East Asian Medical Plant Centella Aslatica. Phytomedicine, 7(5), 427–448. https://doi.org/10.1016/s0944-7113(00)80065-3
35 Puttarak, P., Dilokthornsakul, P., Saokaew, S., Dhippayom, T., Kongkaew, C., Sruamsiri, R., Chuthaputti, A., & Chaiyakunapruk, N. (2017). Effects of Centella Asiatica (L.) urb. on cognitive function and mood related outcomes: A systematic review and meta-analysis. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09823-9
36 Farhana, K. M., Malueka, R. G., Wibowo, S., & Gofir, A. (2016). Effectiveness of gotu kola extract 750 mg and 1000 mg compared with folic acid 3 mg in improving vascular cognitive impairment after stroke. Evidence-Based Complementary and Alternative Medicine, 2016, 1–6. https://doi.org/10.1155/2016/2795915
37 Gotu Kola uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.). Retrieved August 19, 2022, from https://www.drugs.com/npp/gotu-kola.html
38 Park, K.-C., Jin, H., Zheng, R., Kim, S., Lee, S.-E., Kim, B.-H., & Yim, S.-V. (2019). Cognition enhancing effect of Panax ginseng in Korean volunteers with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial. Translational and Clinical Pharmacology, 27(3), 92. https://doi.org/10.12793/tcp.2019.27.3.92
39 Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: A systematic review. BMC Complementary and Alternative Medicine, 12(1). https://doi.org/10.1186/1472-6882-12-70
40 Koop, T., Dienel, A., Heldmann, M., & Münte, T. F. (2020). Effects of a rhodiola rosea extract on mental resource allocation and attention: An event‐related potential dual task study. Phytotherapy Research, 34(12), 3287–3297. https://doi.org/10.1002/ptr.6778
41 Ismail, Z. M., Morcos, M. A., Mohammad, M. D., & Aboulkhair, A. G. (2014). Enhancement of neural stem cells after induction of depression in Male albino rats (a histological & immunohistochemical study). International Journal of Stem Cells, 7(2), 70–78. https://doi.org/10.15283/ijsc.2014.7.2.70
42 Edwards, D., Heufelder, A., & Zimmermann, A. (2012). Therapeutic effects and safety of rhodiola rosea extract WS® 1375 in subjects with life-stress symptoms - results of an open-label study. Phytotherapy Research, 26(8), 1220–1225. https://doi.org/10.1002/338 ptr.3712
43 Morris, M. C., Wang, Y., Barnes, L. L., Bennett, D. A., Dawson-Hughes, B., & Booth, S. L. (2017). Nutrients and bioactives in green leafy vegetables and cognitive decline. Neurology, 90(3). https://doi.org/10.1212/wnl.0000000000004815
44 Home: Dietary guidelines for Americans. Home | Dietary Guidelines for Americans. (n.d.). Retrieved August 22, 2022, from https://www.dietaryguidelines.gov/
45 Foods linked to better brainpower. Harvard Health. (2021, March 6). Retrieved August 22, 2022, from https://www.health.harvard.edu/healthbeat/foods-linked-tobetter-brainpower
46 Kokubun, K., Nemoto, K., & Yamakawa, Y. (2020). Fish intake may affect brain structure and improve cognitive ability in healthy people. Frontiers in Aging Neuroscience, 12. https://doi.org/10.3389/fnagi.2020.00076
47 Foods linked to better brainpower. Harvard Health. (2021, March 6). Retrieved August 22, 2022, from https://www.health.harvard.edu/healthbeat/foods-linked-tobetter-brainpower
48 Spencer, J. P. (2010). The impact of fruit flavonoids on memory and cognition. British Journal of Nutrition, 104(S3). https://doi.org/10.1017/s0007114510003934
49 Devore, E. E., Kang, J. H., Breteler, M. M., & Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72(1), 135–143. https://doi.org/10.1002/ana.23594
50 Home: Dietary guidelines for Americans. Home | Dietary Guidelines for Americans. (n.d.). Retrieved August 22, 2022, from https://www.dietaryguidelines.gov/
51 Arab, L., & Ang, A. (2014). A cross sectional study of the association between walnut consumption and cognitive function among adult us populations represented in nhanes. The Journal of Nutrition, Health & Aging, 19(3), 284–290. https://doi.org/10.1007/s12603-014-0569-2
52 Mayer, E. A., Nance, K., & Chen, S. (2022). The gut–brain axis. Annual Review of Medicine, 73(1), 439–453. https://doi.org/10.1146/annurev-med-042320-014032
53 Gareau, M. G. (2016). Cognitive function and the microbiome. International Review of Neurobiology, 227–246. https://doi.org/10.1016/bs.irn.2016.08.001
54 Vecchio, L. M., Meng, Y., Xhima, K., Lipsman, N., Hamani, C., & Aubert, I. (2018). The neuroprotective effects of exercise: Maintaining a healthy brain throughout aging. Brain Plasticity, 4(1), 17–52. https://doi.org/10.3233/bpl-180069
55 De la Rosa, A., Solana, E., Corpas, R., Bartrés-Faz, D., Pallàs, M., Vina, J., Sanfeliu, C., & Gomez-Cabrera, M. C. (2019). Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40040-8
56 Edward R. Laskowski, M. D. (2021, September 22). How much exercise do you really need? Mayo Clinic. Retrieved August 22, 2022, from https://rb.gy/pxpxjz.
57 Xiong, G. L., & Doraiswamy, P. M. (2009). Does meditation enhance cognition and brain plasticity? Annals of the New York Academy of Sciences, 1172(1), 63–69. https://doi.org/10.1196/annals.1393.002
58 Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S. M., Gard, T., & Lazar, S. W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research: Neuroimaging, 191(1), 36–43. https://doi.org/10.1016/j.pscychresns.2010.08.006
59 Nunez, K. (2020, July 20). Why do we sleep? Healthline. Retrieved August 20, 2022, from https://rb.gy/va6rle.
60 Nunez, K. (2020, July 20). Why do we sleep? Healthline. Retrieved August 20, 2022,
from https://www.healthline.com/health/why-do-we-sleep#brain-function
61 Poe, G. R. (2017). Sleep is for forgetting. The Journal of Neuroscience, 37(3), 464–473.
https://doi.org/10.1523/jneurosci.0820-16.2017
62 Eugene AR, Masiak J. The Neuroprotective Aspects of Sleep. MEDtube Sci. 2015 Mar;3(1):35-40. PMID: 26594659; PMCID: PMC4651462.
63 Gorgoni, M., D’Atri, A., Lauri, G., Rossini, P. M., Ferlazzo, F., & De Gennaro, L. (2013). Is sleep essential for neural plasticity in humans, and how does it affect motor and cognitive recovery? Neural Plasticity, 2013, 1–13. https://doi.org/10.1155/2013/103949
64 U.S. Department of Health and Human Services. (2016, March 31). How sleep clears the brain. National Institutes of Health. Retrieved August 15, 2022, from https://rb.gy/y0etw1.
65 Pennisi, M., Lanza, G., Cantone, M., D’Amico, E., Fisicaro, F., Puglisi, V., Vinciguerra, L.,
Bella, R., Vicari, E., & Malaguarnera, G. (2020). Acetyl-l-carnitine in dementia and other
cognitive disorders: A critical update. Nutrients, 12(5), 1389. https://doi.org/10.3390/
nu12051389
66 Virmani, M. A., & Cirulli, M. (2022). The role of L-carnitine in mitochondria, prevention of metabolic inflexibility and disease initiation. International Journal of Molecular Sciences, 23(5), 2717. https://doi.org/10.3390/ijms23052717
67 Rump, T. J., Muneer, P. M. A., Szlachetka, A. M., Lamb, A., Haorei, C., Alikunju, S., Xiong, H., Keblesh, J., Liu, J., Zimmerman, M. C., Jones, J., Donohue, T. M., Persidsky, Y., & Haorah, J. (2010). Acetyl-l-carnitine protects neuronal function from alcohol-induced oxidative damage in the brain. Free Radical Biology and Medicine, 49(10), 1494–1504. https://doi.org/10.1016/j.freeradbiomed.2010.08.011
68 WebMD. (n.d.). Acetyl-l-carnitine: Overview, uses, side effects, precautions, interactions, dosing and reviews. WebMD. Retrieved August 22, 2022, from https://www.webmd.com/vitamins/ai/ingredientmono-834/acetyl-l-carnitine
69 Chu, C.-S., Hung, C.-F., Ponnusamy, V. K., Chen, K.-C., & Chen, N.-C. (2022). Higher serum DHA and slower cognitive decline in patients with alzheimer’s disease: Two-year follow-up. Nutrients, 14(6), 1159. https://doi.org/10.3390/nu14061159
70 Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition, 3(1), 1–7. https://doi.org/10.3945/an.111.000893
71 Lopes Sakamoto, F., Metzker Pereira Ribeiro, R., Amador Bueno, A., & Oliveira Santos, H. (2019). Psychotropic effects of L-Theanine and its clinical properties: From the management of anxiety and stress to a potential use in schizophrenia. Pharmacological Research, 147, 104395. https://doi.org/10.1016/j.phrs.2019.104395
72 Everett, J. M., Gunathilake, D., Dufficy, L., Roach, P., Thomas, J., Upton, D., & Naumovski, N. (2016). Theanine consumption, stress and anxiety in human clinical trials: A systematic review. Journal of Nutrition & Intermediary Metabolism, 4, 41–42. https://doi.org/10.1016/j.jnim.2015.12.308
73 Williams, J. L., Everett, J. M., D’Cunha, N. M., Sergi, D., Georgousopoulou, E. N., Keegan, R. J., McKune, A. J., Mellor, D. D., Anstice, N., & Naumovski, N. (2019). The effects of green tea amino acid L-theanine consumption on the ability to manage stress and anxiety levels: A systematic review. Plant Foods for Human Nutrition, 75(1), 12–23. https://doi.org/10.1007/s11130-019-00771-5
74 Schwalfenberg, G. K., & Genuis, S. J. (2017). The importance of magnesium in clinical healthcare. Scientifica, 2017, 1–14. https://doi.org/10.1155/2017/4179326
75 Mateos-Aparicio, P., & Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13. https://doi.org/10.3389/fncel.2019.00066
76 Gamma, E. (2021, March 24). What is brain plasticity? Brain Plasticity (Neuroplasticity)| Simply Psychology. Retrieved August 22, 2022, from https://www.simplypsychology.org/brain-plasticity.html
77 Kirkland, A., Sarlo, G., & Holton, K. (2018). The role of magnesium in neurological disorders. Nutrients, 10(6), 730. https://doi.org/10.3390/nu10060730
78 Pickering, G., Mazur, A., Trousselard, M., Bienkowski, P., Yaltsewa, N., Amessou, M., Noah, L., & Pouteau, E. (2020). Magnesium status and stress: The Vicious Circle Concept revisited. Nutrients, 12(12), 3672. https://doi.org/10.3390/nu12123672
79 MediLexicon International. (n.d.). Magnesium glycinate: Uses, benefits, and side effects. Medical News Today. Retrieved August 22, 2022, from https://www.medicalnewstoday.com/articles/315372#risks-and-complications
80 Kim, B.-K., & Park, S.-K. (2020). Phosphatidylserine modulates response to oxidative stress through hormesis and increases lifespan via DAF-16 in Caenorhabditis elegans. Biogerontology, 21(2), 231–244. https://doi.org/10.1007/s10522-020-09856-0
81 Glade, M. J., & Smith, K. (2015). Phosphatidylserine and the human brain. Nutrition, 31(6), 781–786. https://doi.org/10.1016/j.nut.2014.10.014
82 Mishra, S., & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Annals of Indian Academy of Neurology, 11(1), 13–19. https://doi.org/10.4103/0972-2327.40220
83 Sarker, M. R., & Franks, S. F. (2018). Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. GeroScience, 40(2), 73–95. https://doi.org/10.1007/s11357-018-0017-z
84 Chamberlain, M. (2022, April 23). The little known reason B vitamins are essential for cognitive function*. mindbodygreen. Retrieved August 23, 2022, from https://www.mindbodygreen.com/articles/b-vitamins-methylation-and-brain-health
85 Moore, E., Mander, A., Ames, D., Carne, R., Sanders, K., & Watters, D. (2012). Cognitive impairment and vitamin B12: A Review. International Psychogeriatrics, 24(4), 541–556. https://doi.org/10.1017/s1041610211002511
86 Venkatramanan, S., Armata, I. E., Strupp, B. J., & Finkelstein, J. L. (2016). Vitamin B-12 and cognition in children. Advances in Nutrition, 7(5), 879–888. https://doi.org/10.3945/an.115.012021
87 Spector, R. (2014). Vitamin Transport Diseases of brain: Focus on folates, thiamine and riboflavin. Brain Disorders & Therapy, 03(02). https://doi.org/10.4172/2168-975x.1000120
88 Uchida, Y., Ito, K., Ohtsuki, S., Kubo, Y., Suzuki, T., & Terasaki, T. (2015). Major involvement of Na+-dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. Journal of Neurochemistry, 134(1), 97–112. https://doi.org/10.1111/jnc.13092
89 Wang, Z., Zhu, W., Xing, Y., Jia, J., & Tang, Y. (2021). B vitamins and prevention of cognitive decline and incident dementia: A systematic review and meta-analysis. Nutrition Reviews, 80(4), 931–949. https://doi.org/10.1093/nutrit/nuab057
90 WebMD. (n.d.). Vitamins B complex oral: Uses, side effects, interactions, pictures, warnings & dosing. WebMD. Retrieved August 23, 2022, from https://rb.gy/m9mpsm.
91 Anjum, I., Jaffery, S. S., Fayyaz, M., Samoo, Z., & Anjum, S. (2018). The role of Vitamin D in brain health: A mini literature review. Cureus. https://doi.org/10.7759/cureus.2960
92 Wartenberg, L. (2022, March 10). Vitamin D deficiency: Symptoms, treatments, and causes. Healthline. Retrieved August 22, 2022, from https://www.healthline.com/nutrition/vitamin-d-deficiency-symptoms
93 Sultan, S., Taimuri, U., Basnan, S. A., Ai-Orabi, W. K., Awadallah, A., Almowald, F., & Hazazi, A. (2020). Low vitamin D and its association with cognitive impairment and dementia. Journal of Aging Research, 2020, 1–10. https://doi.org/10.1155/2020/6097820
94 Soni M, Kos K, Lang IA, Jones K, Melzer D, Llewellyn DJ. Vitamin D and cognitive function. Scand J Clin Lab Invest Suppl. 2012;243:79-82. doi:10.3109/00365513.2012.681969. PMID: 22536767. 95 Bjarnadottir, A. (2021, February 18). How much vitamin D should you take for optimal health? Healthline. Retrieved June 22, 2022, from https://www.healthline.com/nutrition/how-much-vitamin-d-to-take 339
96 Farzam K, Faizy RM, Saadabadi A. Stimulants. 2022 Jun 16. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 30969718.
97 Miah, T., & Kamat, D. (2017). Current understanding of the health effects of electromagnetic fields. Pediatric Annals, 46(4). https://doi.org/10.3928/19382359-20170316-01
98 U.S. Department of Health and Human Services. (n.d.). Electric & Magnetic Fields. National Institute of Environmental Health Sciences. Retrieved August 15, 2022, from https://www.niehs.nih.gov/health/topics/agents/emf/index.cfm
99 Kivrak, E. G., Yurt, K. K., Kaplan, A. A., Alkan, I., & Altun, G. (2017). Effects of electromagnetic fields exposure on the antioxidant defense system. Journal of Microscopy and Ultrastructure, 5(4), 167. https://doi.org/10.1016/j.jmau.2017.07.003
100 Kim, J. H., Lee, J.-K., Kim, H.-G., Kim, K.-B., & Kim, H. R. (2019). Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomolecules & Therapeutics, 27(3), 265–275. https://doi.org/10.4062/biomolther.2018.152
101 Suratman, S., Edwards, J. W., & Babina, K. (2015). Organophosphate pesticides exposure among farmworkers: Pathways and risk of adverse health effects. Reviews on Environmental Health, 30(1), 65–79. https://doi.org/10.1515/reveh-2014-0072
102 Naughton, S. X., & Terry, A. V. (2018). Neurotoxicity in acute and repeated organophosphate exposure. Toxicology, 408, 101–112. https://doi.org/10.1016/j.tox.2018.08.011
103 Tsai, Y.-H., & Lein, P. J. (2021). Mechanisms of organophosphate neurotoxicity. Current Opinion in Toxicology, 26, 49–60. https://doi.org/10.1016/j.cotox.2021.04.002
104 Jokanović, M. (2018). Neurotoxic effects of organophosphorus pesticides and possible association with Neurodegenerative Diseases in man: A Review. Toxicology, 410, 125–131. https://doi.org/10.1016/j.tox.2018.09.009
105 Denis Lairon. Nutritional quality and safety of organic food. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2010, 30 (1), pp.33-41. ff10.1051/agro/2009019ff. ffhal-00886513f
106 Liu J, Lewis G. Environmental toxicity and poor cognitive outcomes in children and adults. J Environ Health. 2014 Jan-Feb;76(6):130-8. PMID: 24645424; PMCID:PMC4247328.
107 Bakulski, K. M., Seo, Y. A., Hickman, R. C., Brandt, D., Vadari, H. S., Hu, H., & Park, S. K. (2020). Heavy metals exposure and alzheimer’s disease and related Dementias. Journal of Alzheimer’s Disease, 76(4), 1215–1242. https://doi.org/10.3233/jad-200282
108 Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
109 Fernandes Azevedo, B., Barros Furieri, L., Peçanha, F. M., Wiggers, G. A., Frizera Vassallo, P., Ronacher Simões, M., Fiorim, J., Rossi de Batista, P., Fioresi, M., Rossoni, L., Stefanon, I., Alonso, M. J., Salaices, M., & Valentim Vassallo, D. (2012). Toxic effects of mercury on the cardiovascular and Central Nervous Systems. Journal of Biomedicine and Biotechnology, 2012, 1–11. https://doi.org/10.1155/2012/949048
110 Wani, A. L., Ara, A., & Usmani, J. A. (2015). Lead toxicity: A Review. Interdisciplinary Toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009
111 Bakulski, K. M., Seo, Y. A., Hickman, R. C., Brandt, D., Vadari, H. S., Hu, H., & Park, S. K. (2020). Heavy metals exposure and alzheimer’s disease and related Dementias. Journal of Alzheimer’s Disease, 76(4), 1215–1242. https://doi.org/10.3233/jad-200282
112 Gimeno-García, E., Andreu, V., & Boluda, R. (1996). Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution, 92(1), 19–25. https://doi.org/10.1016/0269-7491(95)00090-9
113 Moreira, P. I. (2013). High-sugar diets, type 2 diabetes and Alzheimerʼs disease. Current Opinion in Clinical Nutrition and Metabolic Care, 16(4), 440–445. https://doi.org/10.1097/mco.0b013e328361c7d1
114 Weinstein, G., Maillard, P., Himali, J. J., Beiser, A. S., Au, R., Wolf, P. A., Seshadri, S., & DeCarli, C. (2015). Glucose indices are associated with cognitive and structural brain measures in Young Adults. Neurology, 84(23), 2329–2337. https://doi.org/10.1212/wnl.0000000000001655
115 Wheeler, M. J., Dempsey, P. C., Grace, M. S., Ellis, K. A., Gardiner, P. A., Green, D. J., & Dunstan, D. W. (2017). Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in Brain Health. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(3), 291–300. https://doi.org/10.1016/j.trci.2017.04.001
116 Siddarth, P., Burggren, A. C., Eyre, H. A., Small, G. W., & Merrill, D. A. (2018). Sedentary behavior associated with reduced medial temporal lobe thickness in middle-aged and older adults. PLOS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195549
117 Wheeler, M. J., Dempsey, P. C., Grace, M. S., Ellis, K. A., Gardiner, P. A., Green, D. J., & Dunstan, D. W. (2017). Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in Brain Health. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(3), 291–300. https://doi.org/10.1016/j.trci.2017.04.001
118 Lewis, C. R., Talboom, J. S., De Both, M. D., Schmidt, A. M., Naymik, M. A., Håberg, A. K., Rundek, T., Levin, B. E., Hoscheidt, S., Bolla, Y., Brinton, R. D., Hay, M., Barnes, C. A., Glisky, E., Ryan, L., & Huentelman, M. J. (2021). Smoking is associated with impaired verbal learning and memory performance in women more than men. Scientific Reports,
11(1). https://doi.org/10.1038/s41598-021-88923-z


Ch. 25: Depression Protocol

1 https://www.who.int/news-room/fact-sheets/detail/depression
2 Garvey, M. J., Tollefson, G. D., Mungas, D., & Hoffmann, N. (1984). Is the distinction between situational and nonsituational primary depression valid? Comprehensive Psychiatry, 25(3), 372–375. https://doi.org/10.1016/0010-440x(84)90070-1
3 Joffe, R. T., Levitt, A. J., Bagby, M., & Regan, J. J. (1993). Clinical Features of Situational and Nonsituational Major Depression. Psychopathology, 26(3–4), 138–144. https://doi.org/10.1159/000284813
4 Coryell, W., Winokur, G., Maser, J. D., Akiskal, H. S., Keller, M. B., & Endicott, J. (1994a). Recurrently situational (reactive) depression: A study of course, phenomenology and familial psychopathology. Journal of Affective Disorders, 31(3), 203–210. https://doi.org/10.1016/0165-0327(94)90030-2
5 Blatt, S. J. (2004). Experiences of depression: Theoretical, clinical, and research perspectives. Experiences of Depression: Theoretical, Clinical, and Research Perspectives. https://doi.org/10.1037/10749-000
6 Bains N, Abdijadid S. Major Depressive Disorder. [Updated 2022 Apr 14]. In: Stat-Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559078/
7 APA Council of Representatives. (2019, February). APA Clinical Practice Guideline for the Treatment of Depression Across Three Age Cohorts. American Psychological Association. Retrieved May 2022, from https://www.apa.org/depression-guideline/guideline.pdf
8 Belujon, P., & Grace, A. A. (2017). Dopamine System Dysregulation in Major Depressive Disorders. International Journal of Neuropsychopharmacology, 20(12), 1036–1046. https://doi.org/10.1093/ijnp/pyx056
9 Pan, J. X., Xia, J. J., Deng, F. L., Liang, W. W., Wu, J., Yin, B. M., Dong, M. X., Chen, J. J., Ye, F., Wang, H. Y., Zheng, P., & Xie, P. (2018). Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Translational Psychiatry, 8(1). https://doi.org/10.1038/s41398-018-0183-x
10 Zhang, F. F., Peng, W., Sweeney, J. A., Jia, Z. Y., & Gong, Q. Y. (2018). Brain structure alterations in depression: Psychoradiological evidence. CNS Neuroscience & Therapeutics, 24(11), 994–1003. https://doi.org/10.1111/cns.12835
11 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi-org.ezproxy.frederick.edu/10.1176/appi.books.9780890425596
12 Wy, T. J. P., & Saadabadi, A. (2021). Schizoaffective Disorder. StatPearls Publishing.
13 Malaspina, D., Owen, M. J., Heckers, S., Tandon, R., Bustillo, J., Schultz, S., Barch, D. M., Gaebel, W., Gur, R. E., Tsuang, M., van Os, J., & Carpenter, W. (2013). Schizoaffective Disorder in the DSM-5. Schizophrenia Research, 150(1), 21–25. https://doi.org/10.1016/j.schres.2013.04.026
14 Lachance MD, L., & Ramsey MD, D. (2015). Food, Mood, and Brain Health: Implications for the Modern Clinician. Missouri Medicine, 112(2), 111–115.
15 Kang, J. H., Ascherio, A., & Grodstein, F. (2005). Fruit and vegetable consumption and cognitive decline in aging women. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 57(5), 713-720
16 Sinclair, A. J., Begg, D., Mathai, M., & Weisinger, R. S. (2007). Omega 3 fatty acids and the brain: review of studies in depression. Asia Pacific Journal of Clinical Nutrition, 16(S1), 391–397.
17 Simopoulos, A. P. (2011). Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Molecular neurobiology, 44(2), 203-215.
18 Sublette, M. E., Ellis, S. P., Geant, A. L., & Mann, J. J. (2011). Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. The Journal of clinical psychiatry, 72(12), 1577–1584. https://doi.org/10.4088/JCP.10m06634
19 Gros, D. F., Antony, M. M., McCabe, R. E., & Swinson, R. P. (2009). Frequency and severity of the symptoms of irritable bowel syndrome across the anxiety disorders and depression. Journal of anxiety disorders, 23(2), 290–296. https://doi.org/10.1016/j.janxdis.2008.08.004
20 Chen, Y., Xu, J., & Chen, Y. (2021). Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13(6), 2099. https://doi.org/10.3390/nu13062099
21 Kennedy, P. J., Murphy, A. B., Cryan, J. F., Ross, P. R., Dinan, T. G., & Stanton, C. (2016). Microbiome in brain function and mental health. Trends in Food Science & Technology, 57, 289–301. https://doi.org/10.1016/j.tifs.2016.05.001
22 Dinan, T. G., & Cryan, J. F. (2017). The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterology clinics of North America, 46(1), 77–89. https://doi.org/10.1016/j.gtc.2016.09.007
23 Sharma, M., Gupta, A., & Prasad, R. (2017). A review on herbs, spices and functional food used in diseases. International Journal of Research & Review, 4(1), 103-108.
24 Singletary, K. (2016). Coriander: Overview of Potential Health Benefits. Nutrition Today, 51(3), 151–161. https://doi.org/10.1097/nt.0000000000000159
25 Amin, C. A., Afiahana Andatia, Fathia Daffa Putri, Siti Nurhayati Utami, & M. Yusuf Wijahaska. (2021). The Potential of Cinnamon as Anti-Depressant. Eureka Herba Indonesia, 2(2), 104–108. https://doi.org/10.37275/ehi.v2i2.19
26 Grosso, G., Micek, A., Castellano, S., Pajak, A., & Galvano, F. (2015). Coffee, tea, caffeine and risk of depression: A systematic review and dose-response meta-analysis of observational studies. Molecular Nutrition & Food Research, 60(1), 223–234. https://doi.org/10.1002/mnfr.201500620
27 Hall, S., Desbrow, B., Anoopkumar-Dukie, S., Davey, A. K., Arora, D., McDermott, C., Schubert, M. M., Perkins, A. V., Kiefel, M. J., & Grant, G. D. (2015). A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Research International, 76, 626–636. https://doi.org/10.1016/j.foodres.2015.07.027
28 Jin, M. J., Yoon, C. H., Ko, H. J., Kim, H. M., Kim, A. S., Moon, H. N., & Jung, S. P. (2016). The Relationship of Caffeine Intake with Depression, Anxiety, Stress, and Sleep in Korean Adolescents. Korean Journal of Family Medicine, 37(2), 111. https://doi.org/10.4082/kjfm.2016.37.2.111340 29 Wang, L., Shen, X., Wu, Y., & Zhang, D. (2015). Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Australian & New Zealand Journal of Psychiatry, 50(3), 228–242. https://doi.org/10.1177/0004867415603131
30 Sanchez-Villegas, A., & Martínez-González, M. A. (2013). Diet, a new target to prevent depression? BMC Medicine, 11(1). https://doi.org/10.1186/1741-7015-11-3
31 Ahmed, S. H., Guillem, K., & Vandaele, Y. (2013). Sugar addiction. Current Opinion in Clinical Nutrition and Metabolic Care, 16(4), 434–439. https://doi.org/10.1097/mco.0b013e328361c8b8
32 DiNicolantonio, J. J., O’Keefe, J. H., & Wilson, W. L. (2017). Sugar addiction: is it real? A narrative review. British Journal of Sports Medicine, 52(14), 910–913. https://doi.org/10.1136/bjsports-2017-097971
33 Singh, N. A., Clements, K. M., & Singh, M. A. F. (2001). The Efficacy of Exercise as a Long-term Antidepressant in Elderly Subjects: A Randomized, Controlled Trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(8), M497–M504. https://doi.org/10.1093/gerona/56.8.m497
34 Legrand, F., & Heuze, J. P. (2007). Antidepressant Effects Associated with Different Exercise Conditions in Participants with Depression: A Pilot Study. Journal of Sport and Exercise Psychology, 29(3), 348–364. https://doi.org/10.1123/jsep.29.3.348
35 Kandola, A., Ashdown-Franks, G., Hendrikse, J., Sabiston, C. M., & Stubbs, B. (2019). Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neuroscience & Biobehavioral Reviews, 107, 525–539. https://doi.org/10.1016/j.neubiorev.2019.09.040
36 Ernst, C., Olsen, A. K., Pinel, J. P. J., Lam, R. W., & Christie, B. R. (2006). Antidepressant effects of exercise: Evidence for an adult-neurogenesis hypothesis? Journal of Psychiatry Neuroscience, 31(2), 84–92.
37 Ekkekakis, P., & Murri, M. B. (2017). REMOVED: Exercise as antidepressant treatment: Time for the transition from trials to clinic? General Hospital Psychiatry, 49, 1. https://doi.org/10.1016/j.genhosppsych.2017.04.008
38 Psarra, E., & Kleftaras, G. (2013). Adaptation to Physical Disabilities: The Role of Meaning in Life and Depression. The European Journal of Counselling Psychology, 2(1), 79–99. https://doi.org/10.5964/ejcop.v2i1.7
39 Heisel, M. J., & Flett, G. L. (2004). Purpose in Life, Satisfaction with Life, and Suicide Ideation in a Clinical Sample. Journal of Psychopathology and Behavioral Assessment, 26(2), 127–135. https://doi.org/10.1023/b:joba.0000013660.22413.e0
40 Pearson, M. R., Brown, D. B., Bravo, A. J., & Witkiewitz, K. (2014). Staying in the Moment and Finding Purpose: The Associations of Trait Mindfulness, Decentering, and Purpose in Life with Depressive Symptoms, Anxiety Symptoms, and Alcohol-Related Problems. Mindfulness, 6(3), 645–653. https://doi.org/10.1007/s12671-014-0300-8
41 Salt, E., Crofford, L. J., & Segerstrom, S. (2017). The Mediating and Moderating Effect of Volunteering on Pain and Depression, Life Purpose, Well-Being, and Physical Activity. Pain Management Nursing, 18(4), 243–249. https://doi.org/10.1016/j.pmn.2017.04.004
42 Delgadillo, J., & Gonzalez Salas Duhne, P. (2020). Targeted prescription of cognitive–behavioral therapy versus person-centered counseling for depression using a machine learning approach. Journal of Consulting and Clinical Psychology, 88(1), 14–24. https://doi.org/10.1037/ccp0000476
43 Williams, J. M. G. (2008). Mindfulness, Depression and Modes of Mind. Cognitive Therapy and Research, 32(6), 721–733. https://doi.org/10.1007/s10608-008-9204-z
44 Hofmann, S. G., Sawyer, A. T., Witt, A. A., & Oh, D. (2010). The effect of mindfulness-based therapy on anxiety and depression: A meta-analytic review. Journal of Consulting and Clinical Psychology, 78(2), 169–183. https://doi.org/10.1037/a0018555
45 Teasdale, J. D., Segal, Z. V., Williams, J. M. G., Ridgeway, V. A., Soulsby, J. M., & Lau, M. A. (2000). Prevention of relapse/recurrence in major depression by mindfulness-based cognitive therapy. Journal of Consulting and Clinical Psychology, 68(4), 615–623. https://doi.org/10.1037/0022-006x.68.4.615
46 APA Council of Representatives. (2019, February). APA Clinical Practice Guideline for the Treatment of Depression Across Three Age Cohorts. American Psychological Association. Retrieved May 2022, from https://www.apa.org/depression-guideline/guideline.pdf
47 Psychology Today Staff. (n.d.). Interpersonal Psychotherapy. Psychology Today. Retrieved May 2022, from https://www.psychologytoday.com/us/therapy-types/interpersonal-psychotherapy
48 Cuijpers, P., Geraedts, A. S., van Oppen, P., Andersson, G., Markowitz, J. C., & van Straten, A. (2011). Interpersonal Psychotherapy for Depression: A Meta-Analysis. American Journal of Psychiatry, 168(6), 581–592. https://doi.org/10.1176/appi.
ajp.2010.10101411
49 Marcus, E. R. (2002). Psychoanalytic Psychotherapy and Psychoanalysis, Overview. Encyclopedia of Psychotherapy, 423–430. https://doi.org/10.1016/b0-12-343010-0/00171-9
50 Taylor, D., Carlyle, J. A., McPherson, S., Rost, F., Thomas, R., & Fonagy, P. (2012). Tavistock Adult Depression Study (TADS): a randomised controlled trial of psychoanalytic psychotherapy for treatment-resistant/treatment-refractory forms of depression. BMC Psychiatry, 12(1). https://doi.org/10.1186/1471-244x-12-60
51 Weitkamp, K., Daniels, J. K., Hofmann, H., Timmermann, H., Romer, G., & Wiegand-Grefe, S. (2014). Psychoanalytic psychotherapy for children and adolescents with severe depressive psychopathology: Preliminary results of an effectiveness trial. Psychotherapy, 51(1), 138–147. https://doi.org/10.1037/a0034178
52 de Jonghe, F., de Maat, S., Van, R., Hendriksen, M., Kool, S., van Aalst, G., & Dekker, J. (2013). Short-Term Psychoanalytic Supportive Psychotherapy for Depressed Patients. Psychoanalytic Inquiry, 33(6), 614–625. https://doi.org/10.1080/07351690.2013.835184
53 Neuman M.D., F. (2013, June 2). Supportive Psychotherapy. Psychology Today. Retrieved May 2022, from https://www.psychologytoday.com/us/blog/fighting-fear/201306/supportive-psychotherapy
54 Abdallah, C. G., Jiang, L., de Feyter, H. M., Fasula, M., Krystal, J. H., Rothman, D. L., Mason, G. F., & Sanacora, G. (2014). Glutamate Metabolism in Major Depressive Disorder. American Journal of Psychiatry, 171(12), 1320–1327. https://doi.org/10.1176/appi.ajp.2014.14010067
55 van Praag, H., & de Haan, S. (1980). Depression vulnerability and 5-hydroxytryptophan prophylaxis. Psychiatry Research, 3(1), 75–83. https://doi.org/10.1016/0165-1781(80)90049-9
56 Meyers, S. (2000). use of neurotransmitter precursors for treatment of depression. Alternative Medicine Review, 5(1), 64–71.
57 Jangid, P., Malik, P., Singh, P., Sharma, M., & Gulia, A. K. (2013). Comparative study of efficacy of l-5-hydroxytryptophan and fluoxetine in patients presenting with first depressive episode. Asian journal of psychiatry, 6(1), 29–34. https://doi.org/10.1016/j.ajp.2012.05.011
58 Iovieno N, Dalton ED, Fava M, Mischoulon D. Second-tier natural antidepressants: review and critique. J Affect Disord. 2011;130(3):343-357.20579741
59 Turner EH, Loftis JM, Blackwell AD. Serotonin a la carte: supplementation with the serotonin precursor 5-hydroxytryptophan. Pharmacol Ther. 2006;109(3):325-338.16023217
60 Kravitz, H. M., Sabelli, H. C., & Fawcett, J. (1984). Dietary supplements of phenylalanine and other amino acid precursors of brain neuroamines in the treatment of depressive disorders. The Journal of the American Osteopathic Association, 84(9), 119–123. https://doi.org/10.1515/jom-1984-840928
61 Beckmann, H., Strauss, M. A., & Ludolph, E. (1977). Dl-phenylalanine in depressed patients: an open study. Journal of neural transmission, 41(2-3), 123–134. https://doi.org/10.1007/BF01670277
62 Fischer, E., Heller, B., Nachon, M., & Spatz, H. (1975). Therapy of depression by phenylalanine. Preliminary note. Arzneimittel-Forschung, 25(1), 132
63 Williams, A. L., Girard, C., Jui, D., Alyse, S., & Katz, D. L. (2009). S-Adenosylmethionine (SAMe) as Treatment for Depression: A Systematic Review. Clinical and Investigative Medicine, 28(3), 132–139.
64 Cuomo, A., Beccarini Crescenzi, B., Bolognesi, S., Goracci, A., Koukouna, D., Rossi, R., & Fagiolini, A. (2020). S-Adenosylmethionine (SAMe) in major depressive disorder (MDD): a clinician-oriented systematic review. Annals of General Psychiatry, 19(1). https://doi.org/10.1186/s12991-020-00298-z
65 Sharma, A., Gerbarg, P., Bottiglieri, T., Massoumi, L., Carpenter, L. L., Lavretsky, H., Muskin, P. R., Brown, R. P., Mischoulon, D., & as Work Group of the American Psychiatric Association Council on Research (2017). S-Adenosylmethionine (SAMe) for Neuropsychiatric Disorders: A Clinician-Oriented Review of Research. The Journal of clinical psychiatry, 78(6), e656–e667. https://doi.org/10.4088/JCP.16r11113
66 Abdallah, C. G., Jiang, L., de Feyter, H. M., Fasula, M., Krystal, J. H., Rothman, D. L., Mason, G. F., & Sanacora, G. (2014). Glutamate Metabolism in Major Depressive Disorder. American Journal of Psychiatry, 171(12), 1320–1327. https://doi.org/10.1176/appi.ajp.2014.14010067
67 Musazzi, L., Treccani, G., & Popoli, M. (2012). Glutamate hypothesis of depression and its consequences for antidepressant treatments. Expert review of neurotherapeutics, 12(10), 1169-1172.
68 Sanacora, G., & Saricicek, A. (2007). GABAergic Contributions to the Pathophysiology of Depression and the Mechanism of Antidepressant Action. CNS & Neurological Disorders - Drug Targets, 6(2), 127–140. https://doi.org/10.2174/187152707780363294
69 Amen M.D., D.., & Routh, L. C. (2004). Healing Anxiety and Depression: Based on Cutting-Edge Brain-Imaging Science (Reprint ed.). Berkley.
70 Ghazizadeh, J., Sadigh‐Eteghad, S., Marx, W., Fakhari, A., Hamedeyazdan, S., Torbati, M., Taheri‐Tarighi, S., Araj‐khodaei, M., & Mirghafourvand, M. (2021). The effects of lemon balm ( Melissa officinalis L.) on depression and anxiety in clinical trials: A systematic review and meta‐analysis. Phytotherapy Research, 35(12), 6690–6705. https://doi.org/10.1002/ptr.7252
71 Ghazizadeh, J., Hamedeyazdan, S., Torbati, M., Farajdokht, F., Fakhari, A., Mahmoudi, J., Araj‐khodaei, M., & Sadigh‐Eteghad, S. (2020). Melissa officinalisL. hydro‐alcoholic extract inhibits anxiety and depression through prevention of central oxidative stress and apoptosis. Experimental Physiology, 105(4), 707–720. https://doi.org/10.1113/ep088254
72 Lin, S. H., Chou, M. L., Chen, W. C., Lai, Y. S., Lu, K. H., Hao, C. W., & Sheen, L. Y. (2015). A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. Journal of Ethnopharmacology, 175, 266–272. https://doi.org/10.1016/j.jep.2015.09.018
73 Cases, J., Ibarra, A., Feuillere, N., Roller, M., & Sukkar, S. G. (2011). Pilot trial of Melissa officinalis L. leaf extract in the treatment of volunteers suffering from mild-to-moderate anxiety disorders and sleep disturbances. Mediterranean journal of nutrition and metabolism, 4(3), 211-218
74 Kennedy, D. O., Scholey, A. B., Tildesley, N. T. J., Perry, E. K., & Wesnes, K. A. (2002). Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacology Biochemistry and Behavior, 72(4), 953-964.
75 Lew, S. Y., Teoh, S. L., Lim, S. H., Lim, L. W., & Wong, K. H. (2020). Discovering the Potentials of Medicinal Mushrooms in Combating Depression – A Review. Mini-Reviews in Medicinal Chemistry, 20(15), 1518–1531. https://doi.org/10.2174/1389557520666200526125534
76 Mi, Xue, Gui-Rong Zeng, Jie-Qing Liu, Zhou-Song Luo, Ling Zhang, Xiao-Man Dai, Wen-Ting Fang, Jing Zhang, and Xiao-Chun Chen. 2022. “Ganoderma Lucidum Triterpenoids Improve Maternal Separation-Induced Anxiety- and Depression-like Behaviors in Mice by Mitigating Inflammation in the Periphery and Brain” Nutrients 14, no. 11: 2268. https://doi.org/10.3390/nu14112268 341
77 Zhang, X., Wang, M., Qiao, Y., Shan, Z., Yang, M., Li, G., Xiao, Y., Wei, L., Bi, H., & Gao, T. (2022). Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking. Annals of translational medicine, 10(6), 282. https://doi.org/10.21037/atm-22-762
78 Lin, Y. E., Chen, Y. C., Lu, K. H., Huang, Y. J., Panyod, S., Liu, W. T., Yang, S. H., Lu, Y. S., Chen, M. H., & Sheen, L. Y. (2021). Antidepressant-like effects of water extract of Cordyceps militaris (Linn.) Link by modulation of ROCK2/PTEN/Akt signaling in an unpredictable chronic mild stress-induced animal model. Journal of ethnopharmacology, 276, 114194. https://doi.org/10.1016/j.jep.2021.114194
79 Ashraf, S. A., Elkhalifa, A., Siddiqui, A. J., Patel, M., Awadelkareem, A. M., Snoussi, M., Ashraf, M. S., Adnan, M., & Hadi, S. (2020). Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential. Molecules (Basel, Switzerland), 25(12), 2735.
https://doi.org/10.3390/molecules25122735
80 Zaidi, Dr.Kamal. (2017). The health benefits of Cordyceps militaris - A review. Kavaka. 48. 27-32
81 Chong, P. S., Fung, M. L., Wong, K. H., & Lim, L. W. (2019). Therapeutic Potential of Hericium erinaceus for Depressive Disorder. International Journal of Molecular Sciences, 21(1), 163. https://doi.org/10.3390/ijms21010163
82 Nagano, M., Shimizu, K., Kondo, R., Hayashi, C., Sato, D., Kitagawa, K., & Ohnuki, K. (2010). Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomedical research (Tokyo, Japan), 31(4), 231–237. https://doi.org/10.2220/biomedres.31.231
83 Yilin Ren, Yan Geng, Yan Du, Wang Li, Zhen-Ming Lu, Hong-Yu Xu, Guo-Hua Xu, Jin-Song Shi, Zheng-Hong Xu. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. The Journal of Nutritional Biochemistry,Vol 57,2018, Pages 67-76,https://doi.org/10.1016/j.jnutbio.2018.03.005
84 Cauffield, J. S., & Forbes, H. J. (1999). dietary supplements used in the treatment of depression, anxiety, and sleep disorders. Lippincott’s Primary Care Practice, 3(3), 290–304. https://europepmc.org/article/med/10711131?utm_medium=27156&client=bot&client=bot&client=bot
85 Gaster, B., & Holroyd, J. (2000). St John’s Wort for Depression. Archives of Internal Medicine, 160(2), 152. https://doi.org/10.1001/archinte.160.2.152
86 St. John’s Wort. (2020, October). NCCIH. Retrieved May 2022, from https://www.nccih.nih.gov/health/st-johns-wort
87 Kasper S. Phytopharmaceutical treatment of anxiety, depression, and dementia in the elderly: evidence from randomized, controlled clinical trials. Wien Med Wochenschr. 2015;165(11-12):217-228.26092515
88 Amsterdam, J. D., Li, Q. S., Xie, S. X., & Mao, J. J. (2020). Putative Antidepressant Effect of Chamomile (Matricaria chamomilla L.) Oral Extract in Subjects with Comorbid Generalized Anxiety Disorder and Depression. The Journal of Alternative and Complementary Medicine, 26(9), 815–821. https://doi.org/10.1089/acm.2019.0252
89 Amsterdam, J. D., Shults, J., Soeller, I., Mao, J. J., Rockwell, K., & Newberg, A. B. (2012). Chamomile (Matricaria recutita) may provide antidepressant activity in anxious, depressed humans: an exploratory study. Alternative therapies in health and medicine, 18(5), 44–49.
90 Mikkelsen, K., Stojanovska, L., & Apostolopoulos, V. (2016). The Effects of Vitamin B in Depression. Current medicinal chemistry, 23(38), 4317–4337. https://doi.org/10.2174/0929867323666160920110810
91 https://ods.od.nih.gov/factsheets/Thiamin-HealthProfessional/
92 Tiemeier, H., van Tuijl, H. R., Hofman, A., Meijer, J., Kiliaan, A. J., & Breteler, M. M. (2002). Vitamin B12, folate, and homocysteine in depression: the Rotterdam Study. The American journal of psychiatry, 159(12), 2099–2101. https://doi.org/10.1176/appi.ajp.159.12.2099
93 Syed, E. U., Wasay, M., & Awan, S. (2013). Vitamin B12 supplementation in treating major depressive disorder: a randomized controlled trial. The open neurology journal, 7, 44–48. https://doi.org/10.2174/1874205X01307010044
94 Wong C. W. (2015). Vitamin B12 deficiency in the elderly: is it worth screening?. Hong Kong medical journal = Xianggang yi xue za zhi, 21(2), 155–164. https://doi.org/10.12809/hkmj144383
95 Sinclair, A. J., Begg, D., Mathai, M., & Weisinger, R. S. (2007). Omega 3 fatty acids and the brain: review of studies in depression. Asia Pacific Journal of Clinical Nutrition, 16(S1), 391–397.
96 Sublette, M. E., Ellis, S. P., Geant, A. L., & Mann, J. J. (2011). Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. The Journal of clinical psychiatry, 72(12), 1577–1584. https://doi.org/10.4088/JCP.10m06634
97 Office of Dietary Supplements - Zinc. (2021, December). National Institute of Health. Retrieved May 2022, from https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/
98 Eby, G. A., & Eby, K. L. (2010). Magnesium for treatment-resistant depression: A review and hypothesis. Medical Hypotheses, 74(4), 649–660. https://doi.org/10.1016/j.mehy.2009.10.051
99 Wang, W. L., Hung, H. Y., Chen, Y. R., Chen, K. H., Yang, S. N., Chu, C. M., & Chan, Y. Y. (2020). Effect of Foot Reflexology Intervention on Depression, Anxiety, and Sleep Quality in Adults: A Meta-Analysis and Metaregression of Randomized Controlled Trials. Evidence-Based Complementary and Alternative Medicine, 2020, 1–21. https://doi.org/10.1155/2020/2654353
100 Tu, C. H., MacDonald, I., & Chen, Y. H. (2019). The Effects of Acupuncture on Glutamatergic Neurotransmission in Depression, Anxiety, Schizophrenia, and Alzheimer’s Disease: A Review of the Literature. Frontiers in Psychiatry, 10. https://doi.org/10.3389/fpsyt.2019.00014
101 Mahdavipour, F., Rahemi, Z., Sadat, Z., & Ajorpaz, N. M. (2019). The effects of foot reflexology on depression during menopause: A randomized controlled clinical trial. Complementary Therapies in Medicine, 47, 102195. https://doi.org/10.1016/j.ctim.2019.102195
102 Hou, W. H., Chiang, P. T., Hsu, T. Y., Chiu, S. Y., & Yen, Y. C. (2010). Treatment Effects of Massage Therapy in Depressed People. The Journal of Clinical Psychiatry, 71(07), 894–901. https://doi.org/10.4088/jcp.09r05009blu
103 Field, T. (2016). Massage therapy research review. Complementary Therapies in Clinical Practice, 24, 19–31. https://doi.org/10.1016/j.ctcp.2016.04.005
104 Field, T. M. (1998). Massage therapy effects. American Psychologist, 53(12), 1270–1281. https://doi.org/10.1037/0003-066x.53.12.1270
105 Javnbakht, M., Hejazi Kenari, R., & Ghasemi, M. (2009). Effects of yoga on depression and anxiety of women. Complementary Therapies in Clinical Practice, 15(2), 102–104. https://doi.org/10.1016/j.ctcp.2009.01.003
106 Thirthalli, J., Naveen, G., Rao, M., Varambally, S., Christopher, R., & Gangadhar, B. (2013). Positive therapeutic and neurotropic effects of yoga in depression: A comparative study. Indian Journal of Psychiatry, 55(7), 400. https://doi.org/10.4103/0019-5545.116313
107 Even, C., Schröder, C. M., Friedman, S., & Rouillon, F. (2008). Efficacy of light therapy in nonseasonal depression: A systematic review. Journal of Affective Disorders, 108(1–2), 11–23. https://doi.org/10.1016/j.jad.2007.09.008
108 Tao, L., Jiang, R., Zhang, K., Qian, Z., Chen, P., Lv, Y., & Yao, Y. (2020). Light therapy in non-seasonal depression: An update meta-analysis. Psychiatry Research, 291, 113247. https://doi.org/10.1016/j.psychres.2020.113247
109 Penders, T. M., Stanciu, C. N., Schoemann, A. M., Ninan, P. T., Bloch, R., & Saeed, S. A. (2016). Bright Light Therapy as Augmentation of Pharmacotherapy for Treatment of Depression. The Primary Care Companion For CNS Disorders. https://doi.org/10.4088/pcc.15r01906
110 Information about medications taken from Stahl, S. M. (2014). Prescriber’s Guide: Stahl’s Essential Psychopharmacology (5th ed.). Cambridge University Press


Ch. 26: Parkinson’s Disease Protocol

1 U.S. Department of Health and Human Services. (2022, April 4). Parkinson’s disease: Causes, symptoms, and treatments. National Institute on Aging. Retrieved August 23, 2022, from https://www.nia.nih.gov/health/parkinsons-disease
2 Chen, H., Zhang, S. M., Hernán, M. A., Willett, W. C., & Ascherio, A. (2002). Diet and Parkinson’s disease: a potential role of dairy products in men. Annals of neurology, 52(6), 793–801. https://doi.org/10.1002/ana.10381
3 Park, M., Ross, G. W., Petrovitch, H., White, L. R., Masaki, K. H., Nelson, J. S., Tanner, C. M., Curb, J. D., Blanchette, P. L., & Abbott, R. D. (2005). Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Neurology, 64(6), 1047–1051. https://doi.org/10.1212/01.WNL.0000154532.98495.BF
4 Kyrozis, A., Ghika, A., Stathopoulos, P., Vassilopoulos, D., Trichopoulos, D., & Trichopoulou, A. (2013). Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. European journal of epidemiology, 28(1), 67–77. https://doi.org/10.1007/s10654-012-9760-0
5 Sääksjärvi, K., Knekt, P., Lundqvist, A., Männistö, S., Heliövaara, M., Rissanen, H., & Järvinen, R. (2013). A cohort study on diet and the risk of Parkinson’s disease: the role of food groups and diet quality. The British journal of nutrition, 109(2), 329–337. https://doi.org/10.1017/S0007114512000955
6 Choi, H. K., Liu, S., & Curhan, G. (2005). Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey. Arthritis and rheumatism, 52(1), 283–289. https://doi.org/10.1002/art.20761
7 Liu R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American journal of clinical nutrition, 78(3 Suppl), 517S–520S. https://doi.org/10.1093/ajcn/78.3.517S
8 Seidl, S. E., Santiago, J. A., Bilyk, H., & Potashkin, J. A. (2014). The emerging role of nutrition in Parkinson’s disease. Frontiers in aging neuroscience, 6, 36. https://doi.org/10.3389/fnagi.2014.00036
9 Tarozzi, A., Angeloni, C., Malaguti, M., Morroni, F., Hrelia, S., & Hrelia, P. (2013). Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxidative medicine and cellular longevity, 2013, 415078. https://doi.
org/10.1155/2013/415078
10 Kyuhou S. (2008). Preventive effects of genistein on motor dysfunction following 6-hydroxydopamine injection in ovariectomized rats. Neuroscience letters, 448(1), 10–14. https://doi.org/10.1016/j.neulet.2008.10.045
11 Liu, L. X., Chen, W. F., Xie, J. X., & Wong, M. S. (2008). Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neuroscience research, 60(2), 156–161. https://doi.org/10.1016/j.neures.2007.10.005
12 Dos Santos Delabary, M., Komeroski, I. G., Monteiro, E. P., Costa, R. R., & Haas, A. N. (2018). Effects of dance practice on functional mobility, motor symptoms and quality of life in people with Parkinson’s disease: a systematic review with meta-analysis. Aging clinical and experimental research, 30(7), 727–735. https://doi.org/10.1007/s40520-017-0836-2
13 Stegemöller, E. L., Hurt, T. R., O’Connor, M. C., Camp, R. D., Green, C. W., Pattee, J. C., & Williams, E. K. (2018). Experiences of Persons With Parkinson’s Disease Engaged in Group Therapeutic Singing. Journal of music therapy, 54(4), 405–431. https://doi.org/10.1093/jmt/thx012
14 Barnish, J., Atkinson, R. A., Barran, S. M., & Barnish, M. S. (2016). Potential Benefit of Singing for People with Parkinson’s Disease: A Systematic Review. Journal of Parkinson’s disease, 6(3), 473–484. https://doi.org/10.3233/JPD-160837
342 15 Fogg-Rogers, L., Buetow, S., Talmage, A., McCann, C. M., Leão, S. H., Tippett, L., Leung, J., McPherson, K. M., & Purdy, S. C. (2016). Choral singing therapy following stroke or Parkinson’s disease: an exploration of participants’ experiences. Disability and rehabilitation, 38(10), 952–962. https://doi.org/10.3109/09638288.2015.1068875
16 García-Casares, N., Martín-Colom, J. E., & García-Arnés, J. A. (2018). Music Therapy in Parkinson’s Disease. Journal of the American Medical Directors Association, 19(12), 1054–1062. https://doi.org/10.1016/j.jamda.2018.09.025
17 Machado Sotomayor, M. J., Arufe-Giráldez, V., Ruíz-Rico, G., & Navarro-Patón, R. (2021). Music Therapy and Parkinson’s Disease: A Systematic Review from 2015-2020. International journal of environmental research and public health, 18(21), 11618. https://doi.org/10.3390/ijerph182111618
18 Morris, I. B., Vasudevan, E., Schedel, M., Weymouth, D., Loomis, J., Pinkhasov, T., & Muratori, L. M. (2019). Music to One’s Ears: Familiarity and Music Engagement in People with Parkinson’s Disease. Frontiers in neuroscience, 13, 661. https://doi.org/10.3389/fnins.2019.00661
19 Pohl, P., Wressle, E., Lundin, F., Enthoven, P., & Dizdar, N. (2020). Group-based music intervention in Parkinson’s disease - findings from a mixed-methods study. Clinical rehabilitation, 34(4), 533–544. https://doi.org/10.1177/0269215520907669
20 Vecchio, L. M., Meng, Y., Xhima, K., Lipsman, N., Hamani, C., & Aubert, I. (2018). The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain plasticity (Amsterdam, Netherlands), 4(1), 17–52. https://doi.org/10.3233/BPL-180069
21 Nag, N., & Jelinek, G. A. (2019). A Narrative Review of Lifestyle Factors Associated with Parkinson’s Disease Risk and Progression. Neuro-degenerative diseases, 19(2), 51–59. https://doi.org/10.1159/000502292
22 Oliveira de Carvalho, A., Filho, A., Murillo-Rodriguez, E., Rocha, N. B., Carta, M. G., & Machado, S. (2018). Physical Exercise for Parkinson’s Disease: Clinical and Experimental Evidence. Clinical practice and epidemiology in mental health: CP & EMH, 14, 89–98. https://doi.org/10.2174/1745017901814010089
23 McKenzie, J. A., Spielman, L. J., Pointer, C. B., Lowry, J. R., Bajwa, E., Lee, C. W., & Klegeris, A. (2017). Neuroinflammation as a Common Mechanism Associated with the Modifiable Risk Factors for Alzheimer’s and Parkinson’s Diseases. Current aging science, 10(3), 158–176. https://doi.org/10.2174/1874609810666170315113244
24 Oliveira de Carvalho, A., Filho, A., Murillo-Rodriguez, E., Rocha, N. B., Carta, M. G., & Machado, S. (2018). Physical Exercise for Parkinson’s Disease: Clinical and Experimental Evidence. Clinical practice and epidemiology in mental health: CP & EMH, 14, 89–98. https://doi.org/10.2174/1745017901814010089
25 Fall, P. A., Fredrikson, M., Axelson, O., & Granérus, A. K. (1999). Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Movement disorders: official journal of the Movement Disorder Society, 14(1), 28–37. https://doi.org/10.1002/1531-8257(199901)14:1<28: aidmds1007>3.0.co;2-o
26 Hellenbrand, W., Boeing, H., Robra, B. P., Seidler, A., Vieregge, P., Nischan, P., Joerg, J., Oertel, W. H., Schneider, E., & Ulm, G. (1996). Diet and Parkinson’s disease. II: A possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology, 47(3), 644–650. https://doi.org/10.1212/wnl.47.3.644
27 Chong, R., Wakade, C., Seamon, M., Giri, B., Morgan, J., & Purohit, S. (2021). Niacin Enhancement for Parkinson’s Disease: An Effectiveness Trial. Frontiers in aging neuroscience, 13, 667032. https://doi.org/10.3389/fnagi.2021.667032
28 Zhao, X., Zhang, M., Li, C., Jiang, X., Su, Y., & Zhang, Y. (2019). Benefits of Vitamins in the Treatment of Parkinson’s Disease. Oxidative medicine and cellular longevity, 2019, 9426867. https://doi.org/10.1155/2019/9426867
29 Nagayama, H., Hamamoto, M., Ueda, M., Nito, C., Yamaguchi, H., & Katayama, Y. (2004). The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clinical neuropharmacology, 27(6), 270–273. https://doi.org/10.1097/01.wnf.0000150865.21759.bc
30 Newmark, H. L., & Newmark, J. (2007). Vitamin D and Parkinson’s disease--a hypothesis. Movement disorders: official journal of the Movement Disorder Society, 22(4), 461–468. https://doi.org/10.1002/mds.21317
31 Liu, Y., & Zhang, B. S. (2014). Serum 25-hydroxyvitamin D predicts severity in Parkinson’s disease patients. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 35(1), 67–71. https://doi.org/10.1007/s10072-013-1539-x
32 Sleeman, I., Aspray, T., Lawson, R., Coleman, S., Duncan, G., Khoo, T. K., Schoenmakers, I., Rochester, L., Burn, D., & Yarnall, A. (2017). The Role of Vitamin D in Disease Progression in Early Parkinson’s Disease. Journal of Parkinson’s disease, 7(4), 669–675. https://doi.org/10.3233/JPD-171122
33 de Rijk, M. C., Breteler, M. M., den Breeijen, J. H., Launer, L. J., Grobbee, D. E., van der Meché, F. G., & Hofman, A. (1997). Dietary antioxidants and Parkinson disease. The Rotterdam Study. Archives of neurology, 54(6), 762–765. https://doi.org/10.1001/archneur.1997.00550180070015
34 Fahn S. (1992). A pilot trial of high-dose alpha-tocopherol and ascorbate in early Parkinson’s disease. Annals of neurology, 32 Suppl, S128–S132. https://doi.org/10.1002/ana.410320722
35 da Silva, T. M., Munhoz, R. P., Alvarez, C., Naliwaiko, K., Kiss, A., Andreatini, R., & Ferraz, A. C. (2008). Depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. Journal of affective disorders, 111(2-3), 351–359. https://doi.org/10.1016/j.jad.2008.03.008
36 Seidl, S. E., Santiago, J. A., Bilyk, H., & Potashkin, J. A. (2014). The emerging role of nutrition in Parkinson’s disease. Frontiers in aging neuroscience, 6, 36. https://doi.org/10.3389/fnagi.2014.00036
37 Ozsoy, O., Seval-Celik, Y., Hacioglu, G., Yargicoglu, P., Demir, R., Agar, A., & Aslan, M. (2011). The influence and the mechanism of docosahexaenoic acid on a mouse model of Parkinson’s disease. Neurochemistry international, 59(5), 664–670. https://doi.org/10.1016/j.neuint.2011.06.012
38 Samadi, P., Grégoire, L., Rouillard, C., Bédard, P. J., Di Paolo, T., & Lévesque, D. (2006). Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Annals of neurology, 59(2), 282–288. https://doi.org/10.1002/ana.20738
39 Cilia, R., Laguna, J., Cassani, E., Cereda, E., Pozzi, N. G., Isaias, I. U., Contin, M., Barichella, M., & Pezzoli, G. (2017). Mucuna pruriens in Parkinson disease: A double-blind, randomized, controlled, crossover study. Neurology, 89(5), 432–438. https://doi.org/10.1212/WNL.0000000000004175
40 Katzenschlager, R., Evans, A., Manson, A., Patsalos, P. N., Ratnaraj, N., Watt, H.,Timmermann, L., Van der Giessen, R., & Lees, A. J. (2004). Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. Journal of
neurology, neurosurgery, and psychiatry, 75(12), 1672–1677. https://doi.org/10.1136/jnnp.2003.028761
41 Song, S., Nie, Q., Li, Z., & Du, G. (2016). Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats. Pathology, research and practice, 212(4), 247–251. https://doi.org/10.1016/j.prp.2015.11.012
42 Khatri, D. K., & Juvekar, A. R. (2016). Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid. Pharmacognosy magazine, 12(Suppl 2), S116–S120. https://doi.org/10.4103/0973-1296.182168
43 Khatri, D. K., & Juvekar, A. R. (2016). Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid. Pharmacognosy magazine, 12(Suppl 2), S116–S120. https://doi.org/10.4103/0973-1296.182168
44 Nebrisi E. E. (2021). Neuroprotective Activities of Curcumin in Parkinson’s Disease: A Review of the Literature. International journal of molecular sciences, 22(20), 11248. https://doi.org/10.3390/ijms222011248
45 Malar, D. S., Prasanth, M. I., Brimson, J. M., Sharika, R., Sivamaruthi, B. S., Chaiyasut, C., & Tencomnao, T. (2020). Neuroprotective Properties of Green Tea (Camellia sinensis) in Parkinson’s Disease: A Review. Molecules (Basel, Switzerland), 25(17), 3926. https://doi.org/10.3390/molecules25173926
46 Xu, Y., Zhang, Y., Quan, Z., Wong, W., Guo, J., Zhang, R., Yang, Q., Dai, R., McGeer, P. L., & Qing, H. (2016). Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson’s Disease. Neurochemical research, 41(10), 2788–2796. https://doi.org/10.1007/s11064-016-1995-9
47 Zhao, J., Liang, Q., Sun, Q., Chen, C., Xu, L., Ding, Y.,& Zhou P. (2017). (-)-Epigallocatechin-3-gallate (EGCG) inhibits fibrillation, disaggregates amyloid fibrils of α-synuclein, and protects PC12 cells against α-synuclein-induced toxicity. RSC Adv. 7:32508–32517. doi: 10.1039/C7RA03752J.
48 Bieschke, J., Russ, J., Friedrich, R. P., Ehrnhoefer, D. E., Wobst, H., Neugebauer, K., & Wanker, E. E. (2010). EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7710–7715. https://doi.org/10.1073/pnas.0910723107
49 Kim, K. H., Lee, D., Lee, H. L., Kim, C. E., Jung, K., & Kang, K. S. (2018). Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. Journal of ginseng research, 42(3), 239–247. https://doi.org/10.1016/j.jgr.2017.03.011
50 Hu, S., Han, R., Mak, S., & Han, Y. (2011). Protection against 1-methyl-4-phenylpyridiniumion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells. Journal of ethnopharmacology, 135(1), 34–42. https://doi.org/10.1016/j.jep.2011.02.017
51 Miraj, S., Rafieian-Kopaei, & Kiani, S. (2017). Melissa officinalis L: A Review Study With an Antioxidant Prospective. Journal of evidence-based complementary & alternative medicine, 22(3), 385–394. https://doi.org/10.1177/2156587216663433
52 Martins, E. N., Pessano, N. T., Leal, L., Roos, D. H., Folmer, V., Puntel, G. O., Rocha, J. B., Aschner, M., Ávila, D. S., & Puntel, R. L. (2012). Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain research bulletin, 87(1), 74–79. https://doi.org/10.1016/j.brainresbull.2011.10.003
53 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.v15.i6.30
54 Wong, K. H., Naidu, M., David, P., Abdulla, M. A., Abdullah, N., Kuppusamy, U. R., &Sabaratnam, V. (2011). Peripheral Nerve Regeneration Following Crush Injury to Rat Peroneal Nerve by Aqueous Extract of Medicinal Mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae). Evidence-based complementary and alternative medicine: eCAM, 2011, 580752. https://doi.org/10.1093/ecam/neq062
55 Cheng, C., & Zhu, X. (2019). Cordycepin mitigates MPTP-induced Parkinson’s disease through inhibiting TLR/NF-κB signaling pathway. Life sciences, 223, 120–127. https://doi.org/10.1016/j.lfs.2019.02.037
56 Ren, Z. L., Wang, C. D., Wang, T., Ding, H., Zhou, M., Yang, N., Liu, Y. Y., & Chan, P. (2019). Ganoderma lucidum extract ameliorates MPTP-induced parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis. Acta pharmacologica Sinica, 40(4), 441–450. https://doi.org/10.1038/s41401-018-0077-8
57 de Oliveria, D. M., Barreto, G., De Andrade, D. V., Saraceno, E., Aon-Bertolino, L., Capani, F., Dos Santos El Bachá, R., & Giraldez, L. D. (2009). Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochemical research, 34(2), 215–220. https://doi.org/10.1007/s11064-008-9749-y
58 Ingale, S. P., & Kasture, S. B. (2017). Protective Effect of Standardized Extract of Passiflora incarnata Flower in Parkinson’s and Alzheimer’s Disease. Ancient science of life, 36(4), 200–206. https://doi.org/10.4103/asl.ASL_231_16 343
59 Universidad Complutense de Madrid. (2009, May 13). Medicinal Plant, St John’s Wort, May Reduce Neuronal Degeneration Caused By Parkinson’s Disease. ScienceDaily. Retrieved August 21, 2022 from www.sciencedaily.com/releases/2009/05/090511181252.htm
60 Ramassamy, C., Clostre, F., Christen, Y., & Costentin, J. (1990). Prevention by a Ginkgo biloba extract (GBE 761) of the dopaminergic neurotoxicity of MPTP. The Journal of pharmacy and pharmacology, 42(11), 785–789. https://doi.
org/10.1111/j.2042-7158.1990.tb07021.x
61 Rojas, P., Serrano-García, N., Mares-Sámano, J. J., Medina-Campos, O. N., Pedraza-Chaverri, J., & Ogren, S. O. (2008). EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. The European journal of neuroscience, 28(1), 41–50.
https://doi.org/10.1111/j.1460-9568.2008.06314.x


Ch. 27: Vertigo and Tinnitus Protocol

1 https://www.nidcd.nih.gov/health/menieres-disease
2 Zhuang JM, Chen HL (1985) Treatment of tinnitus with Cordyceps infusion: a report of 23 cases. Fujian Med J; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926930/
3 Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front Pharmacol. 2020 Apr 7;11:422. doi: 10.3389/fphar.2020.00422. PMID: 32317975; PMCID: PMC7155419. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7155419/
4 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.
v15.i6.30
5 Sereda M, Xia J, Scutt P, Hilton MP, El Refaie A, Hoare DJ. Ginkgo biloba for tinnitus. Cochrane Database Syst Rev. 2019 Dec 23;2019(12):CD013514. doi: 10.1002/14651858. CD013514. PMCID: PMC6926930
6 Smith GS, Romanelli‐Gobbi M, Gray‐Karagrigoriou E, Artz GJ. Complementary and integrative treatments: tinnitus. Otolaryngologic Clinics of North America 2013;46:389‐408
7 Dogan R, Sjostrand AP, Yenıgun A, Karatas E, Kocyigit A, Ozturan O. Influence of Ginkgo Biloba extract (EGb 761) on expression of IL‐1 Beta, IL‐6, TNF‐alfa, HSP‐70, HSF‐1 and COX‐2 after noise exposure in the rat cochlea. Auris Nasus Larynx 2018;45(4):680‐5
8 Tagoe, T., Deeping, D., & Hamann, M. (2017). Saturation of long-term potentiation in the dorsal cochlear nucleus and its pharmacological reversal in an experimental model of tinnitus. Experimental neurology, 292, 1–10. https://doi.org/10.1016/j.expneurol.2017.02.011 https://pubmed.ncbi.nlm.nih.gov/28214516/
9 Cevette, M. J., Barrs, D. M., Patel, A., Conroy, K. P., Sydlowski, S., Noble, B. N., Nelson, G. A., & Stepanek, J. (2011). Phase 2 study examining magnesium-dependent tinnitus. The international tinnitus journal, 16(2), 168–173. https://pubmed.ncbi.nlm.nih.gov/22249877/


Ch. 28: Menopause Protocol

1 Choi, U. K., Lee, O. H., Yim, J. H., Cho, C. W., Rhee, Y. K., Lim, S. I., & Kim, Y. C. (2010). Hypolipidemic and antioxidant effects of dandelion (Taraxacum officinale) root and leaf on cholesterol-fed rabbits. International journal of molecular sciences, 11(1), 67–78. https://doi.org/10.3390/ijms11010067
2 Jolly JJ, Chin KY, Alias E, Chua KH, Soelaiman IN. Protective Effects of Selected Botanical Agents on Bone. Int J Environ Res Public Health. 2018;15(5):963. Published 2018 May 11. doi:10.3390/ijerph15050963
3 Zhang G, Qin L, Shi Y. Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial. J Bone Miner Res. 2007;22(7):1072-1079. doi:10.1359/jbmr.070405
4 Milligan, S. R., Kalita, J. C., Heyerick, A., Rong, H., De Cooman, L., & De Keukeleire, D. (1999). Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. The Journal of clinical endocrinology and metabolism, 84(6), 2249–2252. https://doi.org/10.1210/jcem.84.6.5887
5 Chen, Y. M., Wang, I. L., Zhu, X. Y., Chiu, W. C., & Chiu, Y. S. (2021). Red Clover Isoflavones Influence Estradiol Concentration, Exercise Performance, and Gut Microbiota in Female Mice. Frontiers in nutrition, 8, 623698. https://doi.org/10.3389/fnut.2021.623698
6 Parsons, M., Simpson, M., & Ponton, T. (1999). Raspberry leaf and its effect on labour: safety and efficacy. Australian College of Midwives Incorporated journal, 12(3), 20–25. https://doi.org/10.1016/s1031-170x(99)80008-7
7 Adhikari, B. M., Bajracharya, A., & Shrestha, A. K. (2015). Comparison of nutritional properties of Stinging nettle (Urtica dioica) flour with wheat and barley flours. Food science & nutrition, 4(1), 119–124. https://doi.org/10.1002/fsn3.259
8 Modi MB, Donga SB, Dei L. Clinical evaluation of Ashokarishta, Ashwagandha Churna and Praval Pishti in the management of menopausal syndrome. Ayu. 2012 Oct;33(4):511-6. doi: 10.4103/0974-8520.110529. PMID: 23723668; PMCID:
PMC3665193
9 Lopresti AL, Smith SJ, Malvi H, Kodgule R. An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine (Baltimore). 2019 Sep;98(37): e17186. doi: 10.1097/MD.0000000000017186. PMID: 31517876; PMCID: PMC6750292
10 Salve, J., Pate, S., Debnath, K., & Langade, D. (2019). Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study. Cureus, 11(12), e6466. https://doi.
org/10.7759/cureus.6466
11 Sebastian, L. A., & Kear, T. (2021). The Effect of Lavender Aromatherapy on Heart Rate, Blood Pressure, and Perceived Stress Among Cardiac Rehabilitation Patients: A Pilot Study. Holistic nursing practice, 10.1097/HNP.0000000000000430. Advance online publication. https://doi.org/10.1097/HNP.0000000000000430
12 Ghazizadeh, J., Sadigh-Eteghad, S., Marx, W., Fakhari, A., Hamedeyazdan, S., Torbati, M., Taheri-Tarighi, S., Araj-Khodaei, M., & Mirghafourvand, M. (2021). The effects of lemon balm (Melissa officinalis L.) on depression and anxiety in clinical trials: A systematic review and meta-analysis. Phytotherapy research: PTR, 35(12), 6690–6705. https://doi.org/10.1002/ptr.7252
13 Chong, P. S., Fung, M. L., Wong, K. H., & Lim, L. W. (2019). Therapeutic Potential of Hericium erinaceus for Depressive Disorder. International journal of molecular sciences, 21(1), 163. https://doi.org/10.3390/ijms21010163
14 Koshovyi, O., Raal, A., Kireyev, I., Tryshchuk, N., Ilina, T., Romanenko, Y., Kovalenko, S.M., & Bunyatyan, N. (2021). Phytochemical and Psychotropic Research of Motherwort (Leonurus cardiaca L.) Modified Dry Extracts. Plants (Basel, Switzerland), 10(2), 230.https://doi.org/10.3390/plants10020230
15 Matsuzaki, H., Shimizu, Y., Iwata, N., Kamiuchi, S., Suzuki, F., Iizuka, H., Hibino, Y., & Okazaki, M. (2013). Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats. BMC complementary and alternative medicine, 13, 370. https://doi.org/10.1186/1472-6882-13-370
16 Geng, P., Siu, K. C., Wang, Z., & Wu, J. Y. (2017). Antifatigue Functions and Mechanisms of Edible and Medicinal Mushrooms. BioMed research international, 2017, 9648496. https://doi.org/10.1155/2017/9648496
17 Pilkington, K., Boshnakova, A., & Richardson, J. (2006). St John’s wort for depression: time for a different perspective?. Complementary therapies in medicine, 14(4), 268–281. https://doi.org/10.1016/j.ctim.2006.01.003
18 van Die, M. D., Burger, H. G., Teede, H. J., & Bone, K. M. (2013). Vitex agnus-castus extracts for female reproductive disorders: a systematic review of clinical trials. Planta medica, 79(7), 562–575. https://doi.org/10.1055/s-0032-1327831
19 Cerqueira, R. O., Frey, B. N., Leclerc, E., & Brietzke, E. (2017). Vitex agnus castus for premenstrual syndrome and premenstrual dysphoric disorder: a systematic review. Archives of women’s mental health, 20(6), 713–719. https://doi.org/10.1007/s00737-017-0791-0
20 Feyzollahi, Z., Mohseni Kouchesfehani, H., Jalali, H., Eslimi-Esfahani, D., & Sheikh Hosseini, A. (2021). Effect of Vitex agnus-castus ethanolic extract on hypothalamic KISS-1 gene expression in a rat model of polycystic ovary syndrome. Avicenna journal of phytomedicine, 11(3), 292–301
21 Mehrpooya, M., Rabiee, S., Larki-Harchegani, A., Fallahian, A. M., Moradi, A., Ataei, S., & Javad, M. T. (2018). A comparative study on the effect of “black cohosh” and “evening primrose oil” on menopausal hot flashes. Journal of education and health promotion, 7, 36. https://doi.org/10.4103/jehp.jehp_81_17 22 Amato, P., Christophe, S., & Mellon, P. L. (2002). Estrogenic activity of herbs commonly used as remedies for menopausal symptoms. Menopause (New York, N.Y.), 9(2), 145–150. https://doi.org/10.1097/00042192-200203000-00010 23 Safdari, F., Motaghi Dastenaei, B., Kheiri, S., & Karimiankakolaki, Z. (2021). Effect of Evening Primrose Oil on Postmenopausal Psychological Symptoms: A Triple-Blind Randomized Clinical Trial. Journal of menopausal medicine, 27(2), 58–65. https://doi.org/10.6118/jmm.21010
24 Srivastava, J. K., Shankar, E., & Gupta, S. (2010). Chamomile: A herbal medicine of the past with bright future. Molecular medicine reports, 3(6), 895–901. https://doi.org/10.3892/mmr.2010.377
25 Franco, L., Sánchez, C., Bravo, R., Rodriguez, A., Barriga, C., & Juánez, J. C. (2012). The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta physiologica Hungarica, 99(2), 133–139. https://doi.org/10.1556/APhysiol.99.2012.2.6
26 Kargozar, R., Azizi, H., & Salari, R. (2017). A review of effective herbal medicines in controlling menopausal symptoms. Electronic physician, 9(11), 5826–5833. https://doi.org/10.19082/5826
27 Guerrero, F. A., & Medina, G. M. (2017). Effect of a medicinal plant (Passiflora incarnata L) on sleep. Sleep science (Sao Paulo, Brazil), 10(3), 96–100. https://doi.org/10.5935/1984-0063.20170018
28 Fedurco, M., Gregorová, J., Šebrlová, K., Kantorová, J., Peš, O., Baur, R., Sigel, E., & Táborská, E. (2015). Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors. Biochemistry research international, 2015, 617620. https://doi.org/10.1155/2015/617620
29 Lindahl, O., & Lindwall, L. (1989). Double blind study of a valerian preparation. Pharmacology, biochemistry, and behavior, 32(4), 1065–1066. https://doi.org/10.1016/0091-3057(89)90082-8
30 Eby, G. A., & Eby, K. L. (2006). Rapid recovery from major depression using magnesium treatment. Medical hypotheses, 67(2), 362–370. https://doi.org/10.1016/j.mehy.2006.01.047
31 Takeda, A., Watanuki, E., & Koyama, S. (2017). Effects of Inhalation Aromatherapy on Symptoms of Sleep Disturbance in the Elderly with Dementia. Evidence-based complementary and alternative medicine: eCAM, 2017, 1902807. https://doi.
org/10.1155/2017/1902807
32 Patel, S., & Goyal, A. (2012). Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech, 2(1), 115. https://doi.org/10.1007/s13205-011-0036-2
33 Zhao, J., Dasmahapatra, A. K., Khan, S. I., & Khan, I. A. (2008). Anti-aromatase activity of the constituents from damiana (Turnera diffusa). Journal of ethnopharmacology, 120(3), 387–393. https://doi.org/10.1016/j.jep.2008.09.016344 34 Ghorbani, Z., Mirghafourvand, M., Charandabi, S. M., & Javadzadeh, Y. (2019). The effect of ginseng on sexual dysfunction in menopausal women: A double-blind, randomized, controlled trial. Complementary therapies in medicine, 45, 57–64. https://doi.org/10.1016/j.ctim.2019.05.015
35 Lee, H. W., Choi, J., Lee, Y., Kil, K. J., & Lee, M. S. (2016). Ginseng for managing menopausal woman’s health: A systematic review of double-blind, randomized, placebo-controlled trials. Medicine, 95(38), e4914. https://doi.org/10.1097/MD.0000000000004914
36 Ghorbani, Z., Mirghafourvand, M., Charandabi, S. M., & Javadzadeh, Y. (2019). The effect of ginseng on sexual dysfunction in menopausal women: A double-blind, randomized, controlled trial. Complementary therapies in medicine, 45, 57–64. https://doi.org/10.1016/j.ctim.2019.05.015
37 Cruz, D. A. C. (2018, February 12). The action of herbal medicine on the libido: aspects of nutritional intervention in increasing sexual desire. SpringerLink. Retrieved May 18, 2022, from https://link.springer.com/article/10.1186
38 rding, C. M., Fisher, L., Papakostas, G., Farabaugh, A., Sonawalla, S., Fava, M., & Mischoulon, D. (2008). A double-blind, randomized, pilot dose-finding study of maca root (L. meyenii) for the management of SSRI-induced sexual dysfunction. CNS neuroscience & therapeutics, 14(3), 182–191. https://doi.org/10.1111/j.1755-5949.2008.00052.x
39 Ranjbar, H., & Ashrafizaveh, A. (2019). Effects of saffron (Crocus sativus) on sexual dysfunction among men and women: A systematic review and meta-analysis. Avicenna journal of phytomedicine, 9(5), 419–427
40 Alok, S., Jain, S. K., Verma, A., Kumar, M., Mahor, A., & Sabharwal, M. (2013). Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pacific Journal of Tropical Disease, 3(3), 242–251. https://doi.org/10.1016/S2222-1808(13)60049-3
41 Kapoor E, Collazo-Clavell ML, Faubion SS. Weight gain in women at midlife: a concise review of the pathophysiology and strategies for management. Mayo Clinic Proceedings. 2017;92(10):1552–1558. doi:10.1016/j.mayocp.2017.08.004
42 Abdulnour J, Doucet E, Brochu M, et al. The effect of the menopausal transition on body composition and cardiometabolic risk factors: a Montreal-Ottawa New Emerging Team group study. Menopause. 2012;19(7):760-767. doi:10.1097/gme.0b013e318240f6f3
43 Kozakowski J, Gietka-Czernel M, Leszczyńska D, Majos A. Obesity in menopause—our negligence or an unfortunate inevitability? Prz Menopauzalny. 2017;16(2):61-65. doi:10.5114/pm.2017.68594
44 Santos, L., Elliott-Sale, K. J., & Sale, C. (2017). Exercise and bone health across the lifespan. Biogerontology, 18(6), 931–946. https://doi.org/10.1007/s10522-017-9732-6
45 Beyer, K. M., Szabo, A., & Nattinger, A. B. (2016). Time Spent Outdoors, Depressive Symptoms, and Variation by Race and Ethnicity. American journal of preventive medicine, 51(3), 281–290. https://doi.org/10.1016/j.amepre.2016.05.004
46 Choudhary, D., Bhattacharyya, S., & Joshi, K. (2017). Body Weight Management
in Adults Under Chronic Stress Through Treatment with Ashwagandha Root Extract: A Double-Blind, Randomized, Placebo-Controlled Trial. Journal of evidence-based complementary & alternative medicine, 22(1), 96–106. https://doi.org/10.1177/2156587216641830
47 Westerterp-Plantenga, M. S., Smeets, A., & Lejeune, M. P. (2005). Sensory and gastrointestinal satiety effects of capsaicin on food intake. International journal of obesity (2005), 29(6), 682–688. https://doi.org/10.1038/sj.ijo.0802862
48 Ranade, Manjiri, and Nikhil Mudgalkar. “A simple dietary addition of fenugreek seed leads to the reduction in blood glucose levels: A parallel group, randomized single-blind trial.” Ayu vol. 38,1-2 (2017): 24-27. doi:10.4103/ayu.AYU_209_15 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954247/
49 Mathern, Jocelyn R et al. “Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects.” Phytotherapy research: PTR vol. 23,11 (2009): 1543-8. doi:10.1002/ptr.2795 https://rb.gy/ljnw4u.
50 Bae, JiYoung et al. “Fennel (Foeniculum vulgare) and Fenugreek (Trigonella foenum-graecum) Tea Drinking Suppresses Subjective Short-term Appetite in Overweight Women.” Clinical nutrition research vol. 4,3 (2015): 168-74. doi:10.7762/cnr.2015.4.3.168. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525133/
51 Chevassus, Hugues et al. “A fenugreek seed extract selectively reduces spontaneous fat consumption in healthy volunteers.” European journal of clinical pharmacology vol. 65,12 (2009): 1175-8. doi:10.1007/s00228-009-0733-5 https://pubmed.ncbi.nlm.nih.gov/19809809/
52 Bae J, Kim J, Choue R, Lim H. Fennel (Foeniculum vulgare) and Fenugreek (Trigonella foenum-graecum) Tea Drinking Suppresses Subjective Short-term Appetite in Overweight Women. Clin Nutr Res. 2015 Jul;4(3):168-74. doi: 10.7762/cnr.2015.4.3.168.Epub 2015 Jul 31. PMID: 26251835; PMCID: PMC4525133
53 Maharlouei, N., Tabrizi, R., Lankarani, K. B., Rezaianzadeh, A., Akbari, M., Kolahdooz, F., Rahimi, M., Keneshlou, F., & Asemi, Z. (2019). The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: A systematic review and meta-analysis of randomized controlled trials. Critical reviews in food science and nutrition, 59(11), 1753–1766. https://doi.org/10.1080/10408398.2018.1427044
54 Ebrahimzadeh Attari, V., Malek Mahdavi, A., Javadivala, Z., Mahluji, S., Zununi Vahed, S., & Ostadrahimi, A. (2018). A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytotherapy research: PTR, 32(4), 577–585. https://doi.org/10.1002/ptr.5986
55 Hiwatashi K, Kosaka Y, Suzuki N, Hata K, Mukaiyama T, Sakamoto K, Shirakawa H, Komai M. Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet. Biosci Biotechnol Biochem. 2010;74(7):1447-51
56 hen Diling, Guo Yinrui, Qi Longkai, Tang Xiaocui, Liu Yadi, Feng Jiaxin, Zhu Xiangxiang, Zeng Miao, Shuai Ou, Wang Dongdong, Xie Yizhen, Burton B. Yang, Wu Qingping. Metabolic regulation of Ganoderma lucidum extracts in high sugar and fat diet-induced obese mice by regulating the gut-brain axis. Journal of Functional Foods.
2020,65:103639
57 Gao, Yihuai & Lan, Jin & Dai, Xihu & Ye, Jingxian & Zhou, Shufeng. A Phase I/II Study of Ling Zhi Mushroom Ganoderma lucidum (W.Curt.:Fr.)Lloyd (Aphyllophoromycetideae) Extract in Patients with Type II Diabetes Mellitus. International Journal of Medicinal Mushrooms. 2004;6. 33-40
58 Liang B, Guo Z, Xie F, Zhao A. Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats. BMC Complement Altern Med. 2013;13:253
59 He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: A review. Int J Biol Macromol. 2017 Apr;97:228-237
60 Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, Tseng SF, Wu TR, Chen YY, Young JD, Lai HC. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015 Jun 23;6:7489. doi: 10.1038/ncomms8489. Erratum in: Nat Commun. 2017 Jul 11;8:16130. PMID: 26102296; PMCID: PMC4557287
61 Phipps, W. R., Martini, M. C., Lampe, J. W., Slavin, J. L., & Kurzer, M. S. (1993). Effect of flax seed ingestion on the menstrual cycle. The Journal of clinical endocrinology and metabolism, 77(5), 1215–1219. https://doi.org/10.1210/jcem.77.5.8077314
62 Harvey, P. W., & Darbre, P. (2004). Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women?. Journal of applied toxicology: JAT, 24(3), 167–176. https://doi.org/10.1002/jat.978
63 Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect. 2011 Jul;119(7):989-96. doi: 10.1289/ehp.1003220. Epub 2011 Mar 2. PMID: 21367689; PMCID: PMC3222987
64 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372850/ Milart, P., Woźniakowska, E., & Wrona, W. (2018). Selected vitamins and quality of life in menopausal women. Przeglad menopauzalny = Menopause review, 17(4), 175–179. https://doi.org/10.5114/pm.2018.81742
65 Iwamoto, J., Takeda, T., & Sato, Y. (2006). Role of vitamin K2 in the treatment of postmenopausal osteoporosis. Current drug safety, 1(1), 87–97. https://doi.org/10.2174/157488606775252629
66 Laird, E., Ward, M., McSorley, E., Strain, J. J., & Wallace, J. (2010). Vitamin D and bone health: potential mechanisms. Nutrients, 2(7), 693–724. https://doi.org/10.3390/nu2070693
67 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372850/Milart, P., Woźniakowska, E., & Wrona, W. (2018). Selected vitamins and quality of life in menopausal women. Przeglad menopauzalny = Menopause review, 17(4), 175–179.
https://doi.org/10.5114/pm.2018.81742
68 Derbyshire E. (2018). Micronutrient Intakes of British Adults Across Mid-Life: A Secondary Analysis of the UK National Diet and Nutrition Survey. Frontiers in nutrition, 5, 55. https://doi.org/10.3389/fnut.2018.00055
69 Ziaei, S., Kazemnejad, A., & Zareai, M. (2007). The effect of vitamin E on hot flashes in menopausal women. Gynecologic and obstetric investigation, 64(4), 204–207. https://doi.org/10.1159/000106491


Ch. 29: Men’s Sexual Health Protocol

1 Washington University School of Medicine. (2016, February 22). In obese patients, 5 percent weight loss has significant health benefits: Initial weight loss lowers risk for diabetes, cardiovascular disease. ScienceDaily. Retrieved June 1, 2022 from www.sciencedaily.com/releases/2016/02/160222134137.htm
2 Hudson, J., & Vimalanathan, S. (2011). Echinacea—A Source of Potent Antivirals for Respiratory Virus Infections. Pharmaceuticals, 4(7), 1019–1031. https://doi.org/10.3390/ph4071019
3 Mazzanti, G., Battinelli, L., Pompeo, C., Serrilli, A. M., Rossi, R., Sauzullo, I., Mengoni, F., & Vullo, V. (2008). Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Natural product research, 22(16), 1433–1440. https://doi.org/10.1080/14786410802075939
4 Chu, M., Ding, R., Chu, Z. Y., Zhang, M. B., Liu, X. Y., Xie, S. H., Zhai, Y. J., & Wang, Y. D. (2014). Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor. BMC complementary and alternative medicine, 14, 89. https://doi.org/10.1186/1472-6882-14-89
5 Gokgoz N.B., Avci F.G., Yoneten K.K., Alaybeyoglu B., Ozkirimli E., Sayar N.A., Kazan D., Sariyar Akbulut B. Response of Escherichia coli to prolonged berberine exposure. Microb. Drug Resist. 2017;23:531–544. doi: 10.1089/mdr.2016.0063
6 Karaosmanoglu K., Sayar N.A., Kurnaz I.A., Akbulut B.S. Assessment of Berberine as a multi-target antimicrobial: A multi-omics study for drug discovery and repositioning. Omics J. Integr. Biol. 2014;18:42–53. doi: 10.1089/omi.2013.0100
7 Petronio Petronio G, Cutuli MA, Magnifico I, Venditti N, Pietrangelo L, Vergalito F, Pane A, Scapagnini G, Di Marco R. In Vitro and In Vivo Biological Activity of Berberine Chloride against Uropathogenic E. coli Strains Using Galleria mellonella as a Host Model. Molecules. 2020 Oct 29;25(21):5010. doi: 10.3390/molecules25215010. PMID: 33137930; PMCID: PMC7662377
8 Ingólfsdóttir K. (2002). Usnic acid. Phytochemistry, 61(7), 729–736. https://doi.org/10.1016/s0031-9422(02)00383-7
9 Dobrescu, D., Tănăsescu, M., Mezdrea, A., Ivan, C., Ordosch, E., Neagoe, F., Rizeanu, A., Trifu, L., & Enescu, V. (1993). Contributions to the complex study of some lichens-Usnea genus. Pharmacological studies on Usnea barbata and Usnea hirta species. Romanian journal of physiology: physiological sciences, 30(1-2),345 101–107
10 Khaleghi, S., Bakhtiari, M., Asadmobini, A., & Esmaeili, F. (2017). Tribulus terrestris Extract Improves Human Sperm Parameters In Vitro. Journal of evidence-based complementary & alternative medicine, 22(3), 407–412. https://doi.org/10.1177/2156587216668110
11 Cruz, D. A. C. (2018b, February 12). The action of herbal medicine on the libido: aspects of nutritional intervention in increasing sexual desire. SpringerLink. Retrieved June 1, 2022, from https://link.springer.com
12 Gonzales, G. F., Nieto, J., Rubio, J., & Gasco, M. (2006). Effect of Black maca (Lepidium meyenii) on one spermatogenic cycle in rats. Andrologia, 38(5), 166–172. https://doi.org/10.1111/j.1439-0272.2006.00733.x
13 Chen, Y. (2017, January 1). Functional study of Cordyceps sinensis and cordycepin in male reproduction: A review. Science Direct. Retrieved June 2, 2022, from https://www.sciencedirect.com
14 Chang, Y. (2008). Effect of Cordyceps Militaris Supplementation on Sperm Production, Sperm Motility and Hormones in Sprague-Dawley Rats. World Scientific. Retrieved February 6, 2022, from https://www.worldscientific.com
15 Ambiye, V. R., Langade, D., Dongre, S., Aptikar, P., Kulkarni, M., & Dongre, A. (2013). Clinical Evaluation of the Spermatogenic Activity of the Root Extract of Ashwagandha (Withania somnifera) in Oligospermic Males: A Pilot Study. Evidence-based complementary and alternative medicine: eCAM, 2013, 571420. https://doi.org/10.1155/2013/571420
16 Saden-Krehula, M., Tajić, M., & Kolbah, D. (1971). Testosterone, epitestosterone and androstenedione in the pollen of Scotch pine P. silvestris L. Experientia, 27(1), 108–109. https://doi.org/10.1007/BF02137770
17 Pilz, S., Frisch, S., Koertke, H., Kuhn, J., Dreier, J., Obermayer-Pietsch, B., Wehr, E., & Zittermann, A. (2011). Effect of vitamin D supplementation on testosterone levels in men. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 43(3), 223–225. https://doi.org/10.1055/s-0030-1269854
18 Prasad, A. S., Mantzoros, C. S., Beck, F. W., Hess, J. W., & Brewer, G. J. (1996). Zinc status and serum testosterone levels of healthy adults. Nutrition (Burbank, Los Angeles County, Calif.), 12(5), 344–348. https://doi.org/10.1016/s0899-9007(96)80058-x
19 Sudeep, H. V., Thomas, J. V., & Shyamprasad, K. (2020). A double blind, placebo-controlled randomized comparative study on the efficacy of phytosterol-enriched and conventional saw palmetto oil in mitigating benign prostate hyperplasia and androgen deficiency. BMC urology, 20(1), 86. https://doi.org/10.1186/s12894-020-00648-9
20 Liu, G. T. (1999b). Recent Advances in Research of Pharmacology and Clinical Applications of Ganoderma P.Karst. Species (Aphyllophoromycetideae) in China - International Journal of Medicinal Mushrooms, Volume 1, 1999, Issue 1 - Begell House Digital Library. Begell House Digital Library. Retrieved 2022, from https://www.dl.begellhouse.com
21 Peng, Z. (2001). Effect of Sporoderm-broken Spores of Ganoderma Lucidum in the Treatment of Partial Androgen Deficiency of the Aging Male | Journal of Guangzhou University of Traditional Chinese Medicine;(6)2001. | WPRIM. Biblioteca. Retrieved 2022, from https://pesquisa.bvsalud.org
22 Kotta, S., Ansari, S. H., & Ali, J. (2013). Exploring scientifically proven herbal aphrodisiacs. Pharmacognosy reviews, 7(13), 1–10. https://doi.org/10.4103/0973-7847.112832
23 Dongre, S., Langade, D., & Bhattacharyya, S. (2015). Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Improving Sexual Function in Women: A Pilot Study. BioMed research international, 2015, 284154. https://doi.org/10.1155/2015/284154
24 Lekomtseva, Y., Zhukova, I., & Wacker, A. (2017). Rhodiola rosea in Subjects with Prolonged or Chronic Fatigue Symptoms: Results of an Open-Label Clinical Trial. Complementary medicine research, 24(1), 46–52. https://doi.org/10.1159/000457918
25 Bawa, A. S. (2006, November 20). Just a moment. . . Institute of Food Technologists (IFT). Retrieved May 16, 2022, from https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-4337.2005.tb00073.x
26 Definition & Facts for Erectile Dysfunction. (2021, July 29). National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/urologic-diseases/erectile-dysfunction/definition-facts
27 Dietary supplements for erectile dysfunction: A natural treatment for ED? (2021, April 10). Mayo Clinic. Retrieved January 6, 2022, from https://rb.gy/vux4fw.
28 Mahdavi-Roshan, M., Mirmiran, P., Arjmand, M., & Nasrollahzadeh, J. (2017). Effects of garlic on brachial endothelial function and capacity of plasma to mediate cholesterol efflux in patients with coronary artery disease. Anatolian journal of cardiology, 18(2), 116–121. https://doi.org/10.14744/AnatolJCardiol.2017.7669
29 Wu, Y., Li, S., Cui, W., Zu, X., Du, J., & Wang, F. (2008). Ginkgo biloba extract improves coronary blood flow in healthy elderly adults: role of endothelium-dependent vasodilation. Phytomedicine: international journal of phytotherapy and phytopharmacology, 15(3), 164–169. https://doi.org/10.1016/j.phymed.2007.12.002
30 Dietary supplements for erectile dysfunction: A natural treatment for ED? (2021b, April 10). Mayo Clinic. https://rb.gy/vux4f.
31 Barassi, A. (2017, February 8). Levels of l-arginine and l-citrulline in patients with erectile dysfunction of different etiology. Wiley Online Library. Retrieved June 2, 2022, from https://onlinelibrary.wiley.com/doi/full/10.1111/andr.12293
32 Gentile, V., Vicini, P., Prigiotti, G., Koverech, A., & Di Silverio, F. (2004). Preliminary observations on the use of propionyl-L-carnitine in combination with sildenafil in patients with erectile dysfunction and diabetes. Current medical research and opinion, 20(9), 1377–1384. https://doi.org/10.1185/030079904X2394
33 El-Sakka A. I. (2018). Dehydroepiandrosterone and Erectile Function: A Review. The world journal of men’s health, 36(3), 183–191. https://doi.org/10.5534/wjmh.180005


Ch. 30: Prostate Protocol

1 https://www.ncbi.nlm.nih.gov/books/NBK279291
2 Leitzmann, M. F., & Rohrmann, S. (2012). Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates. Clinical epidemiology, 4, 1–11. https:\doi.org\10.2147\CLEP.S16747
3 Harvard Health. (n.d.). Retrieved April 12, 2022, from https:\www.health.harvard.edu\topics\prostate-health
4 https://www.niddk.nih.gov/health-information/urologic-diseases/prostate-problems/prostatitis-inflammation-prostate
5 https://bphnews.com/prostatitis-symptoms/
6 https://www.mayoclinic.org/diseases-conditions/benign-prostatic-hyperplasia/symptoms-causes/syc-20370087
7 Key statistics for prostate cancer: Prostate cancer facts. American Cancer Society.(n.d.). Retrieved April 12, 2022, from https:\www.cancer.org\cancer\prostate-cancer\about\key-statistics.html
8 Ho, E., & Song, Y. (2009). Zinc and prostatic cancer. Current opinion in clinical nutrition and metabolic care, 12(6), 640–645. https:\doi.org\10.1097\MCO.0b013e32833106ee
9 Chen, P., Zhang, W., Wang, X., Zhao, K., Negi, D. S., Zhuo, L., Qi, M., Wang, X., & Zhang, X. (2015). Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine, 94(33), e1260. https:\doi.org\10.1097\MD.0000000000001260
10 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464847/ Imran, M., Ghorat, F., Ul-Haq, I., Ur-Rehman, H., Aslam, F., Heydari, M., Shariati, M. A., Okuskhanova, E., Yessimbekov, Z., Thiruvengadam, M., Hashempur, M. H., & Rebezov, M. (2020). Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants (Basel, Switzerland), 9(8), 706. https://doi.org/10.3390/antiox9080706
11 Murillo, G., & Mehta, R. G. (2001). Cruciferous vegetables and cancer prevention. Nutrition and cancer, 41(1-2), 17–28. https:\doi.org\10.1080\01635581.2001.9680607
12 Guo, Y., Zhi, F., Chen, P., Zhao, K., Xiang, H., Mao, Q., Wang, X., & Zhang, X. (2017). Green tea and the risk of prostate cancer: A systematic review and meta-analysis. Medicine, 96(13), e6426. https:\doi.org\10.1097\MD.0000000000006426
13 Miyata, Y., Shida, Y., Hakariya, T., & Sakai, H. (2019). Anti-Cancer Effects of Green Tea Polyphenols Against Prostate Cancer. Molecules (Basel, Switzerland), 24(1), 193. https:\doi.org\10.3390\molecules24010193
14 Aucoin, M., Cooley, K., Knee, C., Fritz, H., Balneaves, L. G., Breau, R., Fergusson, D., Skidmore, B., Wong, R., & Seely, D. (2017). Fish-Derived Omega-3 Fatty Acids and Prostate Cancer: A Systematic Review. Integrative cancer therapies, 16(1), 32–62. https:\doi.org\10.1177\1534735416656052
15 Wang, L., & Martins-Green, M. (2014). Pomegranate and its components as alternative treatment for prostate cancer. International journal of molecular sciences, 15(9), 14949–14966. https:\doi.org\10.3390\ijms150914949
16 Parikesit, D., Mochtar, C. A., Umbas, R., & Hamid, A. R. (2016). The impact of obesity towards prostate diseases. Prostate international, 4(1), 1–6. https:\doi.org\10.1016\j.prnil.2015.08.001
17 Kim, W. T., Yun, S. J., Choi, Y. D., Kim, G. Y., Moon, S. K., Choi, Y. H., Kim, I. Y., & Kim, W. J. (2011). Prostate size correlates with fasting blood glucose in non-diabetic benign prostatic hyperplasia patients with normal testosterone levels. Journal of Korean medical science, 26(9), 1214–1218. https:\doi.org\10.3346\jkms.2011.26.9.1214
18 Yan Song, Jorge E. Chavarro, Yin Cao, Weiliang Qiu, Lorelei Mucci, Howard D. Sesso, Meir J. Stampfer, Edward Giovannucci, Michael Pollak, Simin Liu, Jing Ma, Whole Milk Intake Is Associated with Prostate Cancer-Specific Mortality among U.S. Male Physicians, The Journal of Nutrition, Volume 143, Issue 2, February 2013, Pages 189–196, https:\doi.org\10.3945\jn.112.168484
19 Trudeau, K., Rousseau, M. C., & Parent, M. É. (2020). Extent of Food Processing and Risk of Prostate Cancer: The PROtEuS Study in Montreal, Canada. Nutrients, 12(3), 637. https:\doi.org\10.3390\nu12030637
20 Kim, W. T., Yun, S. J., Choi, Y. D., Kim, G. Y., Moon, S. K., Choi, Y. H., Kim, I. Y., & Kim, W. J. (2011). Prostate size correlates with fasting blood glucose in non-diabetic benign prostatic hyperplasia patients with normal testosterone levels. Journal of Korean medical science, 26(9), 1214–1218. https:\doi.org\10.3346\jkms.2011.26.9.1214
21 Davies, N. M., Gaunt, T. R., Lewis, S. J., Holly, J., Donovan, J. L., Hamdy, F. C., Kemp, J. P., Eeles, R., Easton, D., Kote-Jarai, Z., Al Olama, A. A., Benlloch, S., Muir, K., Giles, G. G., Wiklund, F., Gronberg, H., Haiman, C. A., Schleutker, J., Nordestgaard, B. G., Travis, R. C.,… Martin, R. M. (2015). The effects of height and BMI on prostate cancer incidence and
mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer causes & control: CCC, 26(11), 1603–1616. https:\doi.org\10.1007\s10552-015-0654-9
22 Campos, C., Sotomayor, P., Jerez, D., González, J., Schmidt, C. B., Schmidt, K., Banzer, W., & Godoy, A. S. (2018). Exercise and prostate cancer: From basic science to clinical applications. The Prostate, 78(9), 639–645. https:\doi.org\10.1002\pros.23502
23 Centers for Disease Control and Prevention. (2022, January 21). Adult BMI calculator. Centers for Disease Control and Prevention. Retrieved April 12, 2022, from https:\www.cdc.gov\healthyweight\assessing\bmi\adult_bmi\english_bmi_calculator\bmi_calculator.html
24 3 ways exercise helps the prostate (yes, the prostate). Harvard Health. (2014, May 15). Retrieved May 30, 2022, from https://rb.gy/pgcfgj 346. 25 Stanley, G., Harvey, K., Slivova, V., Jiang, J., & Sliva, D. (2005). Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-beta1 from prostate cancer cells. Biochemical and biophysical research communications, 330(1), 46–52. https:\doi.org\10.1016\j.bbrc.2005.02.116
26 Zhao, X., Zhou, D., Liu, Y., Li, C., Zhao, X., Li, Y., & Li, W. (2018). Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway. Molecular Medicine Reports, 17, 147-157. https:\doi.org\10.3892\mmr.2017.7904
27 Luk S-U, Lee TK-W, Liu J, Lee DT-W, Chiu Y-T, Ma S, et al. (2011) Chemopreventive Effect of PSP Through Targeting of Prostate Cancer Stem Cell-Like Population. PLoS ONE 6(5): e19804. https://doi.org/10.1371/journal.pone.0019804
28 Blagodatski, A., Yatsunskaya, M., Mikhailova, V., Tiasto, V., Kagansky, A., & Katanaev, V. L. (2018). Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget, 9(49), 29259–29274. https://doi.org/10.18632/oncotarget.25660 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044372/
29 Nahata, A. and Dixit, V.K. (2012), Ganoderma lucidum is an inhibitor of testosterone-induced prostatic hyperplasia in rats. Andrologia, 44: 160-174. https:\doi.org\10.1111\j.1439-0272.2010.1155.x
30 Zhang, D. Y., Wu, J., Ye, F., Xue, L., Jiang, S., Yi, J., Zhang, W., Wei, H., Sung, M., Wang, W., & Li, X. (2003). Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer research, 63(14), 4037–4043
31 Ikemoto, S., Sugimura, K., Yoshida, N., Yasumoto, R., Wada, S., Yamamoto, K., & Kishimoto, T. (2000). Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology, 55(6), 951–955. https:\doi.org\10.1016\s0090-4295(00)00467-2
32 Ma, X., Yan, W., Dai, Z., Gao, X., Ma, Y., Xu, Q., Jiang, J., & Zhang, S. (2016). Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt\β-catenin pathway. Drug design, development and therapy, 10, 1419–1441. https:\doi.org\10.2147\DDDT.S102541
33 Boyle, P., Robertson, C., Lowe, F., &amp; Roehrborn, C. (n.d.). Meta-analysis of clinical trials of Permixon in the treatment of symptomatic benign prostatic hyperplasia. Gold Journal. Retrieved April 13, 2022, from https:\www.goldjournal.net\article\S0090-4295(99)00593-2\fulltext
34 Gordon, A. E., & Shaughnessy, A. F. (2003). Saw palmetto for prostate disorders. American family physician, 67(6), 1281–1283
35 Penugonda, K., & Lindshield, B. L. (2013). Fatty acid and phytosterol content of commercial saw palmetto supplements. Nutrients, 5(9), 3617–3633. https:\doi.org\10.3390\nu5093617
36 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798925/ Penugonda, K., & Lindshield, B. L. (2013). Fatty acid and phytosterol content of commercial saw palmetto supplements. Nutrients, 5(9), 3617–3633. https://doi.org/10.3390/
nu5093617
37 https://www.mountsinai.org/health-library/herb/saw-palmetto
38 Lichius, J. J., & Muth, C. (1997). The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse. Planta medica, 63(4), 307–310. https:\doi.org\10.1055\s-2006-957688
39 Ghorbanibirgani, A., Khalili, A., & Zamani, L. (2013). The efficacy of stinging nettle (urtica dioica) in patients with benign prostatic hyperplasia: a randomized double-blind study in 100 patients. Iranian Red Crescent medical journal, 15(1), 9–10. https:\doi.org\10.5812\ircmj.2386
40 Keehn, A., &amp; Lowe, F. (n.d.). Complementary and alternative medications for benign prostatic ... - canjurol.comA. Canadian Journal of Urology. Retrieved April 13, 2022, from https:\www.canjurol.com\html\freearticles\JUV22I5S1F_08_DrLowe.pdf
41 Wilt, T., Ishani, A., MacDonald, R., Stark, G., Mulrow, C., & Lau, J. (2000). Beta-sitosterols for benign prostatic hyperplasia. The Cochrane database of systematic reviews, 1999(2), CD001043. https:\doi.org\10.1002\14651858.CD001043
42 MacDonald, R., Ishani, A., Rutks, I., & Wilt, T. J. (2000). A systematic review of Cernilton for the treatment of benign prostatic hyperplasia. BJU international, 85(7), 836–841. https:\doi.org\10.1046\j.1464-410x.2000.00365.x
43 Dai, S., Mo, Y., Wang, Y., Xiang, B., Liao, Q., Zhou, M., Li, X., Li, Y., Xiong, W., Li, G., Guo, C., & Zeng, Z. (2020). Chronic Stress Promotes Cancer Development. Frontiers in oncology, 10, 1492. https:\doi.org\10.3389\fonc.2020.01492
44 Salve, J., Pate, S., Debnath, K., & Langade, D. (2019). Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study. Cureus, 11(12), e6466. https:\doi.org\10.7759\cureus. 6466
45 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https:\doi.org\10.1615\intjmedmushr.v15.i6.30
46 Kuypers K. (2021). Self-Medication with Ganoderma lucidum (“Reishi”) to Combat Parkinson’s Disease Symptoms: A Single Case Study. Journal of medicinal food, 24(7), 766–773. https:\doi.org\10.1089\jmf.2020.0137
47 Rossi, P., Buonocore, D., Altobelli, E., Brandalise, F., Cesaroni, V., Iozzi, D., Savino, E., & Marzatico, F. (2014). Improving Training Condition Assessment in Endurance Cyclists: Effects of Ganoderma lucidum and Ophiocordyceps sinensis Dietary Supplementation. Evidence-based complementary and alternative medicine: eCAM, 2014, 979613. https:\doi.org\10.1155\2014\979613
48 Rossi, P., Buonocore, D., Altobelli, E., Brandalise, F., Cesaroni, V., Iozzi, D., Savino, E., & Marzatico, F. (2014). Improving Training Condition Assessment in Endurance Cyclists: Effects of Ganoderma lucidum and Ophiocordyceps sinensis Dietary Supplementation. Evidence-based complementary and alternative medicine: eCAM, 2014, 979613. https:\doi.org\10.1155\2014\979613
49 Scholey, A., Gibbs, A., Neale, C., Perry, N., Ossoukhova, A., Bilog, V., Kras, M., Scholz, C., Sass, M., & Buchwald-Werner, S. (2014). Anti-stress effects of lemon balm-containing foods. Nutrients, 6(11), 4805–4821. https:\doi.org\10.3390\nu6114805
50 Sayorwan, W., Siripornpanich, V., Piriyapunyaporn, T., Hongratanaworakit, T., Kotchabhakdi, N., & Ruangrungsi, N. (2012). The effects of lavender oil inhalation on emotional states, autonomic nervous system, and brain electrical activity. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 95(4), 598–606
51 Rider, J. R., Wilson, K. M., Sinnott, J. A., Kelly, R. S., Mucci, L. A., & Giovannucci, E. L. (2016). Ejaculation Frequency and Risk of Prostate Cancer: Updated Results with an Additional Decade of Follow-up. European urology, 70(6), 974–982. https:\doi.org\10.1016\j.eururo.2016.03.027
52 Jacobsen, S. J., Jacobson, D. J., Rohe, D. E., Girman, C. J., Roberts, R. O., & Lieber, M. M. (2003). Frequency of sexual activity and prostatic health: fact or fairy tale
53 Perciavalle, V., Blandini, M., Fecarotta, P., Buscemi, A., Di Corrado, D., Bertolo, L., Fichera, F., & Coco, M. (2017). The role of deep breathing on stress. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(3), 451–458. https:\doi.org\10.1007\s10072-016-2790-8
54 Porcacchia, A. S., Câmara, D., Andersen, M. L., & Tufik, S. (2022). Sleep disorders and prostate cancer prognosis: biology, epidemiology, and association with cancer development risk. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP), 31(2), 178–189. https:\doi.org\10.1097\CEJ.0000000000000685
55 Espinosa, G., Esposito, R., Kazzazi, A., & Djavan, B. (2013). Vitamin D and benign prostatic hyperplasia -- a review. The Canadian journal of urology, 20(4), 6820–6825
56 Trump, D. L., & Aragon-Ching, J. B. (2018). Vitamin D in prostate cancer. Asian journal of andrology, 20(3), 244–252. https:\doi.org\10.4103\aja.aja_14_18
57 Alexander W. (2013). Prostate cancer risk and omega-3 Fatty Acid intake from fish oil: a closer look at media messages versus research findings. P & T: a peer-reviewed journal for formulary management, 38(9), 561–564
58 Ho, E., & Song, Y. (2009). Zinc and prostatic cancer. Current opinion in clinical nutrition and metabolic care, 12(6), 640–645. https:\doi.org\10.1097\MCO.0b013e32833106ee
59 Franklin, R. B., & Costello, L. C. (2007). Zinc as an anti-tumor agent in prostate cancer and in other cancers. Archives of biochemistry and biophysics, 463(2), 211–217. https:\doi.org\10.1016\j.abb.2007.02.033
60 Sauer, A. K., Vela, H., Vela, G., Stark, P., Barrera-Juarez, E., & Grabrucker, A. M. (2020). Zinc Deficiency in Men Over 50 and Its Implications in Prostate Disorders. Frontiers in oncology, 10, 1293. https://doi.org/10.3389/fonc.2020.01293 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424038/
61 Sauer, A. K., Vela, H., Vela, G., Stark, P., Barrera-Juarez, E., & Grabrucker, A. M. (2020). Zinc Deficiency in Men Over 50 and Its Implications in Prostate Disorders. Frontiers in oncology, 10, 1293. https://doi.org/10.3389/fonc.2020.01293 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424038
62 Sayehmiri, K., Azami, M., Mohammadi, Y., Soleymani, A., & Tardeh, Z. (2018). The association between Selenium and Prostate Cancer: a Systematic Review and Meta-Analysis. Asian Pacific journal of cancer prevention: APJCP, 19(6), 1431–1437. https:\doi.org\10.22034\APJCP.2018.19.6.1431
63 https://ods.od.nih.gov/factsheets/Selenium-Consumer/
64 Chen, P., Zhang, W., Wang, X., Zhao, K., Negi, D. S., Zhuo, L., Qi, M., Wang, X., & Zhang, X. (2015). Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine, 94(33), e1260. https:\doi.org\10.1097\MD.0000000000001260
65 Mirahmadi, M., Azimi-Hashemi, S., Saburi, E., Kamali, H., Pishbin, M., & Hadizadeh, F. (2020). Potential inhibitory effect of lycopene on prostate cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 129, 110459. https:\doi.org\10.1016\j.biopha.2020.110459
66 Mirahmadi, M., Azimi-Hashemi, S., Saburi, E., Kamali, H., Pishbin, M., & Hadizadeh, F. (2020). Potential inhibitory effect of lycopene on prostate cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 129, 110459. https:\doi.org\10.1016\j.biopha.2020.110459
67 Wheeler, K. M., & Liss, M. A. (2019). The Microbiome and Prostate Cancer Risk. Current urology reports, 20(10), 66. https:\doi.org\10.1007\s11934-019-0922-4


Ch. 31: Women’s Sexual Health Protocol

1 Ohishi, T., Goto, S., Monira, P., Isemura, M., & Nakamura, Y. (2016). Anti-inflammatory Action of Green Tea. Anti-inflammatory & anti-allergy agents in medicinal chemistry, 15(2), 74–90. https://doi.org/10.2174/1871523015666160915154443
2 Giugliano, D., Ceriello, A., & Esposito, K. (2006). The effects of diet on inflammation: emphasis on the metabolic syndrome. Journal of the American College of Cardiology, 48(4), 677–685. https://doi.org/10.1016/j.jacc.2006.03.052
3 Grant, P., & Ramasamy, S. (2012). An update on plant derived anti-androgens. International journal of endocrinology and metabolism, 10(2), 497–502. https://doi.org/10.5812/ijem.3644
4 Feyzollahi, Z., Mohseni Kouchesfehani, H., Jalali, H., Eslimi-Esfahani, D., & Sheikh Hosseini, A. (2021). Effect of Vitex agnus-castus ethanolic extract on hypothalamic KISS-1 gene expression in a rat model of polycystic ovary syndrome. Avicenna journal of phytomedicine, 11(3), 292–301
5 Hadijafari, M., Khani, S., Abouhamzeh, B., Abdollahi, M., & Mirghazanfari, S. M. (2020). Yarrow (Achillea millefolium L.) Extract Produces Beneficial effects on Reproductive Parameters in Estradiol Valerate-Induced Polycystic Ovarian Syndrome in Rats. Future Natural Products, 6(1), 1-13 347
6 Tadić, V., Arsić, I., Zvezdanović, J., Zugić, A., Cvetković, D., & Pavkov, S. (2017). The estimation of the traditionally used yarrow (Achillea millefolium L. Asteraceae) oil extracts with anti-inflamatory potential in topical application. Journal of ethnopharmacology, 199, 138–148. https://doi.org/10.1016/j.jep.2017.02.002
7 Shahin, A. Y., & Mohammed, S. A. (2014). Adding the phytoestrogen Cimicifugae Racemosae to clomiphene induction cycles with timed intercourse in polycystic ovary syndrome improves cycle outcomes and pregnancy rates - a randomized trial. Gynecological endocrinology: the official journal of the International Society of Gynecological Endocrinology, 30(7), 505–510. https://doi.org/10.3109/09513590.2014.895983
8 Structure and Bioactivity of Steroidal Saponins Isolated from the Roots of Chamaelirium luteum (False Unicorn) Victoria L. Challinor, Julia M. U. Stuthe, Peter G. Parsons, Lynette K. Lambert, Reginald P. Lehmann, William Kitching, and James J. De VossJournal of Natural Products 2012 75 (8), 1469-1479DOI: 10.1021/np300393y
9 Rababa’h, A. M., Matani, B. R., & Ababneh, M. A. (2020). The ameliorative effects of marjoram in dehydroepiandrosterone induced polycystic ovary syndrome in rats. Life sciences, 261, 118353. https://doi.org/10.1016/j.lfs.2020.118353
10 Wang, H., Zhu, C., Ying, Y., Luo, L., Huang, D., & Luo, Z. (2017). Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget, 9(11), 10135–10146. https://doi.org/10.18632/oncotarget.20807
11 Jurkiewicz-Przondziono, J., Lemm, M., Kwiatkowska-Pamuła, A., Ziółko, E., & Wójtowicz, M. K. (2017). Influence of diet on the risk of developing endometriosis. Ginekologia polska, 88(2), 96–102. https://doi.org/10.5603/GP.a2017.0017.
12 Stacey A. Missmer, Jorge E. Chavarro, Susan Malspeis, Elizabeth R. Bertone-Johnson, Mark D. Hornstein, Donna Spiegelman, Robert L. Barbieri, Walter C. Willett, Susan E. Hankinson, A prospective study of dietary fat consumption and endometriosis risk, Human Reproduction, Volume 25, Issue 6, 1 June 2010, Pages 1528–1535, https://doi.org/10.1093/humrep/deq044. https://academic.oup.com/humrep/article/25/6/1528/2915756
13 Moore, J. S., Gibson, P. R., Perry, R. E., & Burgell, R. E. (2017). Endometriosis in patients with irritable bowel syndrome: Specific symptomatic and demographic profile, and response to the low FODMAP diet. The Australian & New Zealand journal of obstetrics & gynaecology, 57(2), 201–205. https://doi.org/10.1111/ajo.12594. https://pubmed.ncbi.nlm.nih.gov/28303579/
14 Marziali, M., Venza, M., Lazzaro, S., Lazzaro, A., Micossi, C., & Stolfi, V. M. (2012). Gluten-free diet: a new strategy for management of painful endometriosis related symptoms?. Minerva chirurgica, 67(6), 499–504. https://pubmed.ncbi.nlm.nih.gov/23334113/
15 Keita, M., Bessette, P., Pelmus, M., Ainmelk, Y., & Aris, A. (2010). Expression of interleukin-1 (IL-1) ligands system in the most common endometriosis-associated ovarian cancer subtypes. Journal of ovarian research, 3, 3. https://doi.org/10.1186/1757-2215-3-3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832771/
16 Mahboubi M. (2019). Evening Primrose (Oenothera biennis) Oil in Management of Female Ailments. Journal of menopausal medicine, 25(2), 74–82. https://doi.org/10.6118/jmm.18190
17 Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., & Xu, R. (2021). Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug design, development and therapy, 15, 4503–4525. https://doi.org/10.2147/DDDT.S327378
18 Suarez-Arroyo, I. J., Rosario-Acevedo, R., Aguilar-Perez, A., Clemente, P. L., Cubano, L. A., Serrano, J., Schneider, R. J., & Martínez-Montemayor, M. M. (2013). Anti-tumor effects of Ganoderma lucidum (reishi) in inflammatory breast cancer in in vivo and in vitro models. PloS one, 8(2), e57431. https://doi.org/10.1371/journal.pone.0057431
19 Torkelson, C. J., Sweet, E., Martzen, M. R., Sasagawa, M., Wenner, C. A., Gay, J., Putiri, A., & Standish, L. J. (2012). Phase 1 Clinical Trial of Trametes versicolor in Women with Breast Cancer. ISRN oncology, 2012, 251632. https://doi.org/10.5402/2012/251632
20 Tuli, H. S., Sandhu, S. S., & Sharma, A. K. (2014). Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech, 4(1), 1–12. https://doi.org/10.1007/s13205-013-0121-9
21 Livdans-Forret, A. B., Harvey, P. J., & Larkin-Thier, S. M. (2007). Menorrhagia: a synopsis of management focusing on herbal and nutritional supplements, and chiropractic. The Journal of the Canadian Chiropractic Association, 51(4), 235–246
22 Gu, Y., & Zhou, Z. (2021). Berberine inhibits the proliferation, invasion and migration of endometrial stromal cells by downregulating miR‑429. Molecular medicine reports, 23(6), 416. https://doi.org/10.3892/mmr.2021.12055
23 Naafe M, Kariman N, Keshavarz Z, Khademi N, Mojab F, Mohammadbeigi A. The effect of hydroalcoholic extracts of Capsella bursa-pastoris on heavy menstrual bleeding: a randomized clinical trial. J Altern Complement Med. July 2018;24(7):694-700. doi:10.1089/acm.2017.0267
24 van Die, M. D., Burger, H. G., Teede, H. J., & Bone, K. M. (2013). Vitex agnus-castus extracts for female reproductive disorders: a systematic review of clinical trials. Planta medica, 79(7), 562–575. https://doi.org/10.1055/s-0032-1327831
25 Mulrow C, Lawrence V, Jacobs B, et al. Milk Thistle: Effects on Liver Disease and Cirrhosis and Clinical Adverse Effects: Summary. 2000. In: AHRQ Evidence Report Summaries. Rockville (MD): Agency for Healthcare Research and Quality (US); 1998-2005. 21. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11896/
26 Wachtel-Galor S, Yuen J, Buswell JA, et al. Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 9. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92757/
27 Gbinigie, O. A., Spencer, E. A., Heneghan, C. J., Lee, J. J., & Butler, C. C. (2020). Cranberry Extract for Symptoms of Acute, Uncomplicated Urinary Tract Infection: A Systematic Review. Antibiotics (Basel, Switzerland), 10(1), 12. https://doi.org/10.3390/antibiotics10010012
28 Melzig M. F. (2004). Echtes Goldrutenkraut--ein Klassiker in der urologischen Phytotherapie [Goldenrod--a classical exponent in the urological phytotherapy]. Wiener medizinische Wochenschrift (1946), 154(21-22), 523–527. https://doi.org/10.1007/s10354-004-0118-4
29 Domenici, L., Monti, M., Bracchi, C., Giorgini, M., Colagiovanni, V., Muzii, L., & Benedetti Panici, P. (2016). D-mannose: a promising support for acute urinary tract infections in women. A pilot study. European review for medical and pharmacological sciences, 20(13), 2920–2925
30 Trill, J., Simpson, C., Webley, F., Radford, M., Stanton, L., Maishman, T., Galanopoulou, A., Flower, A., Eyles, C., Willcox, M., Hay, A., Griffiths, G., Little, P., Lewith, G., & Moore, M (2017). Uva-ursi extract and ibuprofen as alternative treatments of adult female urinary tract infection (ATAFUTI): study protocol for a randomised controlled trial. Trials, 18(1), 421. https://doi.org/10.1186/s13063-017-2145-7
31 Sienkiewicz, M., Wasiela, M., & Głowacka, A. (2012). Aktywność przeciwbakteryjna olejku oreganowego (Origanum heracleoticum L.) wobec szczepów klinicznych Escherichia coli i Pseudomonas aeruginosa [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas
aeruginosa]. Medycyna doswiadczalna i mikrobiologia, 64(4), 297–307
32 Ogbolu, D. O., Oni, A. A., Daini, O. A., & Oloko, A. P. (2007). In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria. Journal of medicinal food, 10(2), 384–387. https://doi.org/10.1089/jmf.2006.1209
33 Yu, D., Wang, J., Shao, X., Xu, F., & Wang, H. (2015). Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. Journal of applied microbiology, 119(5), 1253–1262. https://doi.org/10.1111/jam.12939
34 Tronina, T., Mrozowska, M., Bartmańska, A., Popłoński, J., Sordon, S., & Huszcza, E. (2021). Simple and Rapid Method for Wogonin Preparation and Its Biotransformation. International journal of molecular sciences, 22(16), 8973. https://doi.org/10.3390/ijms22168973
35 Astani, A., Navid, M. H., & Schnitzler, P. (2014). Attachment and penetration of acyclovir-resistant herpes simplex virus are inhibited by Melissa officinalis extract. Phytotherapy research: PTR, 28(10), 1547–1552. https://doi.org/10.1002/ptr.5166
36 Vanti, G., Ntallis, S. G., Panagiotidis, C. A., Dourdouni, V., Patsoura, C., Bergonzi, M. C., Lazari, D., & Bilia, A. R. (2020). Glycerosome of Melissa officinalis L. Essential Oil for Effective Anti-HSV Type 1. Molecules (Basel, Switzerland), 25(14), 3111. https://doi.org/10.3390/molecules25143111
37 Mazzanti, G., Battinelli, L., Pompeo, C., Serrilli, A. M., Rossi, R., Sauzullo, I., Mengoni, F., & Vullo, V. (2008). Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Natural product research, 22(16), 1433–1440. https://doi.org/10.1080/14786410802075939
38 Mazzanti, G., Battinelli, L., Pompeo, C., Serrilli, A. M., Rossi, R., Sauzullo, I., Mengoni, F., & Vullo, V. (2008). Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Natural product research, 22(16), 1433–1440. https://doi.org/10.1080/14786410802075939
39 Wang, L., Yang, R., Yuan, B., Liu, Y., & Liu, C. (2015). The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta pharmaceutica Sinica. B, 5(4), 310–315. https://doi.org/10.1016/j.apsb.2015.05.005
40 Huan C, Xu Y, Zhang W, Guo T, Pan H, Gao S. Research Progress on the Antiviral Activity of Glycyrrhizin and its Derivatives in Liquorice. Front Pharmacol. 2021 Jul 6;12:680674. doi: 10.3389/fphar.2021.680674. PMID: 34295250; PMCID: PMC8290359
41 Brochot, A., Guilbot, A., Haddioui, L., & Roques, C. (2017). Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen, 6(4), e00459. https://doi.org/10.1002/mbo3.459
42 Schuhmacher, A., Reichling, J., & Schnitzler, P. (2003). Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine: international journal of phytotherapy and phytopharmacology, 10(6-7), 504–510. https://doi.org/10.1078/094471103322331467
43 Chen, H., Muhammad, I., Zhang, Y., Ren, Y., Zhang, R., Huang, X., Diao, L., Liu, H., Li, X., Sun, X., Abbas, G., & Li, G. (2019). Antiviral Activity Against Infectious Bronchitis Virus and Bioactive Components of Hypericum perforatum L. Frontiers in pharmacology, 10, 1272. https://doi.org/10.3389/fphar.2019.01272
44 Carson, C. F., Hammer, K. A., & Riley, T. V. (2006). Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clinical microbiology reviews, 19(1), 50–62. https://doi.org/10.1128/CMR.19.1.50-62.2006
45 Hekmatpou, D., Mehrabi, F., Rahzani, K., & Aminiyan, A. (2019). The Effect of Aloe Vera Clinical Trials on Prevention and Healing of Skin Wound: A Systematic Review. Iranian journal of medical sciences, 44(1), 1–9
46 van Die, M. D., Burger, H. G., Teede, H. J., & Bone, K. M. (2013). Vitex agnus-castus extracts for female reproductive disorders: a systematic review of clinical trials. Planta medica, 79(7), 562–575. https://doi.org/10.1055/s-0032-1327831
47 Lekomtseva, Y., Zhukova, I., & Wacker, A. (2017). Rhodiola rosea in Subjects with Prolonged or Chronic Fatigue Symptoms: Results of an Open-Label Clinical Trial. Complementary medicine research, 24(1), 46–52. https://doi.org/10.1159/000457918
48 Bawa, A. S. (2006, November 20). Just a moment. . . Institute of Food Technologists (IFT). Retrieved May 16, 2022, from https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-4337.2005.tb00073.x
49 Cruz, D. A. C. (2018, February 12). The action of herbal medicine on the libido: aspects of nutritional intervention in increasing sexual desire. SpringerLink. Retrieved May 18, 2022, from https://link.springer.com
50 Gonzales, G. F., Nieto, J., Rubio, J., & Gasco, M. (2006). Effect of Black maca (Lepidium meyenii) on one spermatogenic cycle in rats. Andrologia, 38(5), 166–172. https://doi.org/10.1111/j.1439-0272.2006.00733.x 348 51 Fierascu, R. C., Fierascu, I., Ortan, A., Fierascu, I. C., Anuta, V., Velescu, B. S., Pituru, S.M., & Dinu-Pirvu, C. E. (2019). Leonurus cardiaca L. as a Source of Bioactive Compounds: An Update of the European Medicines Agency Assessment Report (2010). BioMed research international, 2019, 4303215. https://doi.org/10.1155/2019/4303215
52 Jing Zheng, Pistilli, M. J., Holloway, A. C., & Crankshaw, D. J. (2010). The effects of commercial preparations of red raspberry leaf on the contractility of the rat’s uterus in vitro. Reproductive sciences (Thousand Oaks, Calif.), 17(5), 494–501. https://doi.org/10.1177/1933719109359703
53 Liu, G. T. (1999). Recent Advances in Research of Pharmacology and Clinical Applications of Ganoderma P.Karst. Species (Aphyllophoromycetideae) in China - International Journal of Medicinal Mushrooms, Volume 1, 1999, Issue 1 - Begell House Digital Library. International Journal of Medicinal Mushrooms. Retrieved May 18, 2022, from https://www.dl.begellhouse.com
54 Geng, P., Siu, K. C., Wang, Z., & Wu, J. Y. (2017). Antifatigue Functions and Mechanisms of Edible and Medicinal Mushrooms. BioMed research international, 2017, 9648496. https://doi.org/10.1155/2017/9648496
55 Liu, C., Qiu, H., Huang, R., Chai, H., Yuan, G., & Shan, S. (2021). Therapeutic Mechanism and Clinical Observation of Traditional Chinese Medicine Combined with Interventional Recanalization for Tubal Infertility. Evidence-based complementary and alternative medicine: eCAM, 2021, 2842250. https://doi.org/10.1155/2021/2842250
56 Hjøllund, N. H., Jensen, T. K., Bonde, J. P., Henriksen, T. B., Andersson, A. M., Kolstad, H. A., Ernst, E., Giwercman, A. J., Skakkebaek, N. E., & Olsen, J. (2000). Stress og frugtbarhed. En forløbsundersøgelse blandt par, som forsøger at blive gravide for første gang [Stress and fertility. A follow-up study among couples planning the first pregnancy]. Ugeskrift for laeger, 162(38), 5081–5086
57 Khalili, H., Neovius, M., Ekbom, A., Ludvigsson, J. F., Askling, J., Chan, A. T., & Olen, O. (2016). Oral Contraceptive Use and Risk of Ulcerative Colitis Progression: A Nationwide Study. The American journal of gastroenterology, 111(11), 1614–1620. https://doi.org/10.1038/ajg.2016.464
58 Khillare, B., & Shrivastav, T. G. (2003). Spermicidal activity of Azadirachta indica (neem) leaf extract. Contraception, 68(3), 225–229. https://doi.org/10.1016/s0010-7824(03)00165-3
59 Jansen, G. C. (2014, January 1). ResearchGate - Temporarily Unavailable. Research-Gate. Retrieved May 18, 2022, from https://www.researchgate.net
60 Kotta, S., Ansari, S. H., & Ali, J. (2013). Exploring scientifically proven herbal aphrodisiacs. Pharmacognosy reviews, 7(13), 1–10. https://doi.org/10.4103/0973-7847.112832
61 Lee, H. W., Choi, J., Lee, Y., Kil, K. J., & Lee, M. S. (2016). Ginseng for managing menopausal woman’s health: A systematic review of double-blind, randomized, placebo-controlled trials. Medicine, 95(38), e4914. https://doi.org/10.1097/MD.0000000000004914
62 Ghorbani, Z., Mirghafourvand, M., Charandabi, S. M., & Javadzadeh, Y. (2019). The effect of ginseng on sexual dysfunction in menopausal women: A double-blind, randomized, controlled trial. Complementary therapies in medicine, 45, 57–64. https://doi.org/10.1016/j.ctim.2019.05.015
63 Zhao, J., Dasmahapatra, A. K., Khan, S. I., & Khan, I. A. (2008). Anti-aromatase activity of the constituents from damiana (Turnera diffusa). Journal of ethnopharmacology, 120(3), 387–393. https://doi.org/10.1016/j.jep.2008.09.016
64 Waynberg, J. (2000, September 1). Effects of Herbal vX on libido and sexual activity in premenopausal and postmenopausal women. SpringerLink. Retrieved May 18, 2022, from https://link.springer.com
65 Beyer, K. M., Szabo, A., & Nattinger, A. B. (2016). Time Spent Outdoors, Depressive Symptoms, and Variation by Race and Ethnicity. American journal of preventive medicine, 51(3), 281–290. https://doi.org/10.1016/j.amepre.2016.05.004
66 Stults-Kolehmainen, M. A., & Sinha, R. (2014). The effects of stress on physical activity and exercise. Sports medicine (Auckland, N.Z.), 44(1), 81–121. https://doi.org/10.1007/s40279-013-0090-5
67 Ghazizadeh, J., Sadigh-Eteghad, S., Marx, W., Fakhari, A., Hamedeyazdan, S., Torbati, M., Taheri-Tarighi, S., Araj-Khodaei, M., & Mirghafourvand, M. (2021). The effects of lemon balm (Melissa officinalis L.) on depression and anxiety in clinical trials: A systematic review and meta-analysis. Phytotherapy research: PTR, 35(12), 6690–6705. https://doi.org/10.1002/ptr.7252
68 Koshovyi, O., Raal, A., Kireyev, I., Tryshchuk, N., Ilina, T., Romanenko, Y., Kovalenko, S. M., & Bunyatyan, N. (2021). Phytochemical and Psychotropic Research of Motherwort (Leonurus cardiaca L.) Modified Dry Extracts. Plants (Basel, Switzerland), 10(2), 230. https://doi.org/10.3390/plants10020230
69 Sebastian, L. A., & Kear, T. (2021). The Effect of Lavender Aromatherapy on Heart Rate, Blood Pressure, and Perceived Stress Among Cardiac Rehabilitation Patients: A Pilot Study. Holistic nursing practice, 10.1097/HNP.0000000000000430. Advance online publication. https://doi.org/10.1097/HNP.0000000000000430
70 Krysiak, R., Szwajkosz, A., & Okopień, B. (2018). The effect of low vitamin D status on sexual functioning and depressive symptoms in apparently healthy men: a pilot study. International journal of impotence research, 30(5), 224–229. https://doi.org/10.1038/s41443-018-0041-7
71 Finkelstein, J. L., Layden, A. J., & Stover, P. J. (2015). Vitamin B-12 and Perinatal Health. Advances in nutrition (Bethesda, Md.), 6(5), 552–563. https://doi.org/10.3945/an.115.008201
72 Parnan Emamverdikhan, A., Golmakani, N., Tabassi, S. A., Hassanzadeh, M., Sharifi, N., & Shakeri, M. T. (2016). A survey of the therapeutic effects of Vitamin E suppositories on vaginal atrophy in postmenopausal women. Iranian journal of nursing and midwifery research, 21(5), 475–481. https://doi.org/10.4103/1735-9066.193393
73 Meston, C. M., & Worcel, M. (2002). The effects of yohimbine plus L-arginine glutamate on sexual arousal in postmenopausal women with sexual arousal disorder. Archives of sexual behavior, 31(4), 323–332. https://doi.org/10.1023/a:1016220225392


Ch. 32: Allergy Protocol

1 Muche-Borowski, C., Kopp, M., Reese, I., Sitter, H., Werfel, T., & Schäfer, T. (2009). Allergy prevention. Deutsches Arzteblatt international, 106(39), 625–631. https://doi.org/10.3238/arztebl.2009.0625
2 Muraro, A., Werfel, T., Hoffmann-Sommergruber, K., Roberts, G., Beyer, K., Bindslev-Jensen, C., Cardona, V., Dubois, A., duToit, G., Eigenmann, P., Fernandez Rivas, M., Halken, S., Hickstein, L., Høst, A., Knol, E., Lack, G., Marchisotto, M. J., Niggemann, B., Nwaru, B. I., Papadopoulos, N. G., … EAACI Food Allergy and Anaphylaxis Guidelines Group (2014).
EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy, 69(8), 1008–1025. https://doi.org/10.1111/all.12429
3 Muraro, A., Werfel, T., Hoffmann-Sommergruber, K., Roberts, G., Beyer, K., Bindslev-Jensen, C., Cardona, V., Dubois, A., duToit, G., Eigenmann, P., Fernandez Rivas, M., Halken, S., Hickstein, L., Høst, A., Knol, E., Lack, G., Marchisotto, M. J., Niggemann, B., Nwaru, B. I., Papadopoulos, N. G., … EAACI Food Allergy and Anaphylaxis Guidelines Group (2014). EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy, 69(8), 1008–1025. https://doi.org/10.1111/all.12429
4 American Academy of Allergy, Asthma and Immunology: https://www.aaaai.org/tools-for-the-public/conditions-library/allergies/allergic-reactions
5 The Immune System in Health and Disease. 5th edition. Janeway CA Jr, Travers P, Walport M, et al. New York: Garland Science; 2001
6 Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2): S73-80. doi: 10.1016/j.jaci.2009.11.017. PMID: 20176269; PMCID: PMC2847274
7 Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012 May 4;18(5):693-704. doi: 10.1038/nm.2755. PMID: 22561833; PMCID: PMC3597223
8 Thangam, E. B., Jemima, E. A., Singh, H., Baig, M. S., Khan, M., Mathias, C. B., Church, M.K., & Saluja, R. (2018). The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Frontiers in immunology, 9, 1873. https://doi.org/10.3389/fimmu.2018.01873
9 Muche-Borowski, C., Kopp, M., Reese, I., Sitter, H., Werfel, T., & Schäfer, T. (2009). Allergy prevention. Deutsches Arzteblatt international, 106(39), 625–631. https://doi.org/10.3238/arztebl.2009.0625
10 Muraro, A., Roberts, G., Worm, M., Bilò, M. B., Brockow, K., Fernández Rivas, M., Santos, A. F., Zolkipli, Z. Q., Bellou, A., Beyer, K., Bindslev-Jensen, C., Cardona, V., Clark, A. T., Demoly, P., Dubois, A. E., DunnGalvin, A., Eigenmann, P., Halken, S., Harada, L., Lack, G.,… EAACI Food Allergy and Anaphylaxis Guidelines Group (2014). Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology. Allergy, 69(8), 1026–1045. https://doi.org/10.1111/all.12437
11 Muraro, A., Roberts, G., Worm, M., Bilò, M. B., Brockow, K., Fernández Rivas, M., Santos, A. F., Zolkipli, Z. Q., Bellou, A., Beyer, K., Bindslev-Jensen, C., Cardona, V., Clark, A. T., Demoly, P., Dubois, A. E., DunnGalvin, A., Eigenmann, P., Halken, S., Harada, L., Lack, G.,… EAACI Food Allergy and Anaphylaxis Guidelines Group (2014). Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology. Allergy, 69(8), 1026–1045. https://doi.org/10.1111/all.12437
12 Eyring, K. R., Pedersen, B. S., Maclean, K. N., Stabler, S. P., Yang, I. V., & Schwartz, D. A. (2018). Methylene-tetrahydrofolate reductase contributes to allergic airway disease. PloS one, 13(1), e0190916. https://doi.org/10.1371/journal.pone.0190916
13 Akin, C., Valent, P., & Metcalfe, D. D. (2010). Mast cell activation syndrome: Proposed diagnostic criteria. The Journal of allergy and clinical immunology, 126(6), 1099–104. e4. https://doi.org/10.1016/j.jaci.2010.08.035
14 Pascal, M., Perez-Gordo, M., Caballero, T., Escribese, M., Lopez Longo, M., & Luengo, O. et al. (2018). Microbiome and Allergic Diseases. Frontiers In Immunology, 9. doi: 10.3389/fimmu.2018.01584
15 Fujimura, K. E., & Lynch, S. V. (2015). Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell host & microbe, 17(5), 592–602. https://doi.org/10.1016/j.chom.2015.04.007
16 Peña-Vélez, R., Toro-Monjaraz, E., Avelar-Rodríguez, D., Ignorosa-Arellano, K., Zárate-Mondragón, F., Cervantes-Bustamante, R., Montijo-Barrios, E., Cadena-León, J., & Ramírez-Mayans, J. (2019). Small intestinal bacterial overgrowth: could it be associated with chronic abdominal pain in children with allergic diseases?. Revista espanola de enfermedades digestivas: organo oficial de la Sociedad Espanola de Patologia Digestiva, 111(12), 927–930. https://doi.org/10.17235/reed.2019.6321/2019
17 Gomaa E. Z. (2020). Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek, 113(12), 2019–2040. https://doi.org/10.1007/s10482-020-01474-7
18 Deloose, E., Janssen, P., Depoortere, I., & Tack, J. (2012). The migrating motor complex: control mechanisms and its role in health and disease. Nature reviews. Gastroenterology & hepatology, 9(5), 271–285. https://doi.org/10.1038/nrgastro.2012.57
19 Gomaa E. Z. (2020). Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek, 113(12), 2019–2040. https://doi.org/10.1007/s10482-020-01474-7
20 Quigley E. (2019). Prebiotics and Probiotics in Digestive Health. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association, 17(2), 333–344. https://doi.org/10.1016/j.cgh.2018.09.028
21 Molina-Torres, G., Rodriguez-Arrastia, M., Roman, P., Sanchez-Labraca, N., & Cardona, D. (2019). Stress and the gut microbiota-brain axis. Behavioural pharmacology, 30(2 and 3-Spec Issue), 187–200. https://doi.org/10.1097/FBP.0000000000000478
22 Gomaa E. Z. (2020). Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek, 113(12), 2019–2040. https://doi.org/10.1007/s10482-020-01474-7
23 Gomaa E. Z. (2020). Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek, 113(12), 2019–2040. https://doi.org/10.1007/s10482-020-01474-7 349
24 Matenchuk, B. A., Mandhane, P. J., & Kozyrskyj, A. L. (2020). Sleep, circadian rhythm, and gut microbiota. Sleep medicine reviews, 53, 101340. https://doi.org/10.1016/j.smrv.2020.101340
25 Bone, K. (2009). The Ultimate Herbal Compendium: A desktop guide for herbal prescribers
26 Wang, Mingxing et al. “Anti-Gastric Ulcer Activity of Polysaccharide Fraction Isolated from Mycelium Culture of Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes).” International journal of medicinal mushrooms vol. 17,11 (2015): 1055-60. doi:10.1615/intjmedmushrooms.v17.i11.50https://pubmed.ncbi.nlm.nih.gov/26853960/)
27 Available Chemical Constituents and Activities of Ganoderma Lucidum (Lingzhi or Red Reishi) Utilizing in Disease Treatment: A mini review. Vo et al. J Res Clin Med. 2021;9: 32. doi: 10.34172/jrcm.2021.032
28 Pallav, K., Dowd, S. E., Villafuerte, J., Yang, X., Kabbani, T., Hansen, J., Dennis, M., Leffler, D. A., Newburg, D. S., & Kelly, C. P. (2014). Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: a randomized clinical trial. Gut microbes, 5(4), 458–467. https://doi.org/10.4161/gmic.29558
https://pubmed.ncbi.nlm.nih.gov/25006989/
29 Vassilopoulou, E., Konstantinou, G. N., Dimitriou, A., Manios, Y., Koumbi, L., & Papadopoulos, N. G. (2020). The Impact of Food Histamine Intake on Asthma Activity: A Pilot Study. Nutrients, 12(11), 3402. https://doi.org/10.3390/nu12113402
30 Son, J. H., Chung, B. Y., Kim, H. O., & Park, C. W. (2018). A Histamine-Free Diet Is
Helpful for Treatment of Adult Patients with Chronic Spontaneous Urticaria. Annals of
dermatology, 30(2), 164–172. https://doi.org/10.5021/ad.2018.30.2.164
31 Vassilopoulou, Emilia & Konstantinou, George & Dimitriou, Anastasia & Manios, Yannis & Koumbi, Lemonica & Papadopoulos, Nikolaos. (2020). The Impact of Food Histamine Intake on Asthma Activity: A Pilot Study. Nutrients. 12. 3402. 10.3390/nu12113402
32 Sánchez-Pérez, S., Comas-Basté, O., Veciana-Nogués, M. T., Latorre-Moratalla, M. L., & Vidal-Carou, M. C. (2021). Low-Histamine Diets: Is the Exclusion of Foods Justified by Their Histamine Content?. Nutrients, 13(5), 1395. https://doi.org/10.3390/nu13051395
33 Kawamoto, Y., Ueno, Y., Nakahashi, E., Obayashi, M., Sugihara, K., Qiao, S., Iida, M., Kumasaka, M. Y., Yajima, I., Goto, Y., Ohgami, N., Kato, M., & Takeda, K. (2016). Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation. The Journal of Nutritional Biochemistry, 27, 112–122.
https://doi.org/10.1016/j.jnutbio.2015.08.025
34 Asha’ari, Z. A., Ahmad, M. Z., Jihan, W. S., Che, C. M., & Leman, I. (2013). Ingestion of honey improves the symptoms of allergic rhinitis: evidence from a randomized placebo-controlled trial in the East coast of Peninsular Malaysia. Annals of Saudi medicine, 33(5), 469–475. https://doi.org/10.5144/0256-4947.2013.469
35 Secor ER Jr, Szczepanek SM, Castater CA, Adami AJ, Matson AP, Rafti ET, Guernsey L, Natarajan P, McNamara JT, Schramm CM, Thrall RS, Silbart LK. Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells. Evid Based Complement Alternat Med. 2013;2013:702196. doi: 10.1155/2013/702196. Epub 2013
Dec 5. PMID: 24381635; PMCID: PMC3870104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870104/
36 Wu TF, Chan YY, Shi WY, Jhong MT. Uncovering the Molecular Mechanism of Anti-Allergic Activity of Silkworm Pupa-Grown Cordyceps militaris Fruit Body. Am J Chin Med. 2017;45(3):497-513. doi: 10.1142/S0192415X17500306. Epub 2017 Apr 2. PMID: 28367714
37 Bhardwaj N, Katyal P, Sharma AK. Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent Pat Inflamm Allergy Drug Discov. 2014;8(2):104-17. doi: 10.2174/1872213x08666140619110657. PMID: 24948193
38 Stavinoha, W.B., 1990. Study of the anti-inflammatory activity of Ganoderma lucidum. Presented at the Third Academic Joint Conference, pp: 201-208
39 Bone, K. (2009). The Ultimate Herbal Compendium: A desktop guide for herbal prescribers
40 Roschek, B., Jr, Fink, R. C., McMichael, M., & Alberte, R. S. (2009). Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phytotherapy research: PTR, 23(7), 920–926. https://doi.org/10.1002/ptr.2763 https://pubmed.ncbi.nlm.nih.gov/19140159/
41 Upton R. Stinging Nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. Journal of Herbal Medicine. 2013;3(1):9-38. doi:10.1016/j.hermed.2012.11.001
42 Mittman P. Randomized, Double-Blind Study of Freeze-Dried Urtica dioica in the Treatment of Allergic Rhinitis. Planta Medica. 1990;56(01):44-47. doi:10.1055/s-2006-960881
43 Roschek B, Fink R, McMichael M, Alberte R. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phytotherapy Research
44 Ayers S, Roschek Jr B, Williams J, Alberte R. Pharmacokinetic analysis of anti-allergy and anti-inflammatory bioactives in a nettle (Urtica dioica) extract. Online Journal of Pharmacology and Pharmacokinetics. 2008;5:6-21
45 Mittman P. (1990). Randomized, double-blind study of freeze-dried Urtica dioica in the treatment of allergic rhinitis. Planta medica, 56(1), 44–47. https://doi.org/10.1055/s-2006-960881
46 Nurul, I. M., Mizuguchi, H., Shahriar, M., Venkatesh, P., Maeyama, K., Mukherjee, P. K., Hattori, M., Choudhuri, M. S., Takeda, N., & Fukui, H. (2011). Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions. International immunopharmacology, 11(11), 1766–1772. https://doi.org/10.1016/j.intimp.2011.07.003
47 Bone, K. (2009). The Ultimate Herbal Compendium: A desktop guide for herbal prescribers
48 Klotter, J. (2006). Coughs, cough medicines, & upper respiratory infections. Townsend Letter: The Examiner of Alternative Medicine, (281), 38+. https://link.gale.com/apps/doc/A155218063/AONEu=anon~42a579ea&sid=googleScholar&xid=9fdada15
49 Turker, A. U., & Camper, N. D. (2002). Biological activity of common mullein, a medicinal plant. Journal of ethnopharmacology, 82(2-3), 117-125
50 Shin, H. S., Bae, M. J., Choi, D. W., & Shon, D. H. (2014). Skullcap (Scutellaria baicalensis) extract and its active compound, wogonin, inhibit ovalbumin-induced Th2-mediated response. Molecules (Basel, Switzerland), 19(2), 2536–2545. https://doi.org/10.3390/molecules19022536
51 Khan, A. U., & Gilani, A. H. (2011). Blood pressure lowering, cardiovascular inhibitory and bronchodilatory actions of Achillea millefolium. Phytotherapy research: PTR, 25(4), 577–583. https://doi.org/10.1002/ptr.3303 https://pubmed.ncbi.nlm.nih.gov/20857434/
52 Ziment, I. (2002). Herbal antitussives. Pulmonary Pharmacology & Therapeutics, 15(3), 327-333
53 Murdaca, G., Gerosa, A., Paladin, F., Petrocchi, L., Banchero, S., & Gangemi, S. (2021). Vitamin D and Microbiota: Is There a Link with Allergies?. International journal of molecular sciences, 22(8), 4288. https://doi.org/10.3390/ijms22084288
54 Doseděl, M., Jirkovský, E., Macáková, K., Krčmová, L. K., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L., Mladěnka, P., & on Behalf of The Oemonom (2021). Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients, 13(2), 615. https://doi.org/10.3390/nu13020615
55 Lewis, E. D., Meydani, S. N., & Wu, D. (2019). Regulatory role of vitamin E in the immune system and inflammation. IUBMB life, 71(4), 487–494. https://doi.org/10.1002/iub.1976
56 Mlcek, J., Jurikova, T., Skrovankova, S., & Sochor, J. (2016). Quercetin and Its Anti-Allergic Immune Response. Molecules (Basel, Switzerland), 21(5), 623. https://doi.org/10.3390/molecules21050623
57 Wessels, I., Maywald, M., & Rink, L. (2017). Zinc as a Gatekeeper of Immune Function. Nutrients, 9(12), 1286. https://doi.org/10.3390/nu9121286
58 Balon, J. W., & Mior, S. A. (2004). Chiropractic care in asthma and allergy. Annals of allergy, asthma & immunology: official publication of the American College of Allergy, Asthma, & Immunology, 93(2 Suppl 1), S55–S60. https://doi.org/10.1016/s1081-1206(10)61487-1
59 Hauswald B, Yarin YM. Acupuncture in allergic rhinitis: A Mini-Review. Allergo J Int. 2014;23(4):115-119. doi: 10.1007/s40629-014-0015-3. Epub 2014 Jun 21. PMID: 26120523; PMCID: PMC4479426
60 Sicherer, S. H., Simons, F., & SECTION ON ALLERGY AND IMMUNOLOGY (2017). Epinephrine for First-aid Management of Anaphylaxis. Pediatrics, 139(3), e20164006. https://doi.org/10.1542/peds.2016-4006
61 Simon D. (2019). Recent Advances in Clinical Allergy and Immunology 2019. International archives of allergy and immunology, 180(4), 291–305. https://doi.org/10.1159/000504364
62 Head, K., Chong, L. Y., Hopkins, C., Philpott, C., Burton, M. J., & Schilder, A. G. (2016). Short-course oral steroids alone for chronic rhinosinusitis. The Cochrane database of systematic reviews, 4(4), CD011991. https://doi.org/10.1002/14651858.CD011991.pub2
63 Lax, S. J., Harvey, J., Axon, E., Howells, L., Santer, M., Ridd, M. J., Lawton, S., Langan, S., Roberts, A., Ahmed, A., Muller, I., Ming, L. C., Panda, S., Chernyshov, P., Carter, B., Williams, H. C., Thomas, K. S., & Chalmers, J. R. (2022). Strategies for using topical corticosteroids in children and adults with eczema. The Cochrane database of systematic reviews, 3(3), CD013356. https://doi.org/10.1002/14651858.CD013356.pub2
64 https://www.allergy.org.au/patients/allergy-treatment/immunotherapy


Ch. 33: Asthma Protocol

1 Barnthouse M, Jones BL. The Impact of Environmental Chronic and Toxic Stress on Asthma. Clin Rev Allergy Immunol. 2019;57(3):427-438. doi:10.1007/s12016-019-08736-x Rosa MJ, Lee AG, Wright RJ. Evidence establishing a link between prenatal and early-life stress and asthma development. Curr Opin Allergy Clin Immunol.
2018;18(2):148-158. doi:10.1097/ACI.0000000000000421
2 Wang N, Li J, Huang X, Chen W, Chen Y. Herbal Medicine Cordyceps sinensis Improves Health-Related Quality of Life in Moderate-to-Severe Asthma. Evid Based Complement Alternat Med. 2016; 2016:6134593. doi:10.1155/2016/6134593
3 WHO: https://www.who.int/news-room/fact-sheets/detail/asthma
4 Gibson P. G., Reddel H., McDonald V. M., et al. Effectiveness and response predictors of omalizumab in a severe allergic asthma population with a high prevalence of comorbidities: the Australian Xolair Registry. Internal Medicine Journal. 2016;46(9):1054–1062. doi: 10.1111/imj.13166.
5 Akiyama K. Nihon Ishinkin Gakkai Zasshi. 2000;41(3):149-155. doi:10.3314/jjmm.41.149
6 Zhang Z, Reponen T, Hershey GK. Fungal Exposure and Asthma: IgE and Non-IgE-Mediated Mechanisms. Curr Allergy Asthma Rep. 2016;16(12):86. doi:10.1007/s11882-016-0667-9 Quansah R, Jaakkola MS, Hugg TT, Heikkinen SA, Jaakkola JJ. Residential dampness and molds and the risk of developing asthma: a systematic review and meta-analysis [published correction appears in PLoS One. 2014;9(3):e93454]. PLoSOne. 2012;7(11):e47526. doi:10.1371/journal.pone.0047526
7 Dannemiller KC, Gent JF, Leaderer BP, Peccia J. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air. 2016;26(2):179-192. doi:10.1111/ina.12205350 Maheswaran D, Zeng Y, Chan-Yeung M, Scott J, Osornio-Vargas A, Becker AB, et al. (2014) Exposure to Beta-(1,3)-D-Glucan in House Dust at Age 7–10 Is Associated with Airway Hyperresponsiveness and Atopic Asthma by Age 11–14. PLoS ONE 9(6): e98878.
https://doi.org/10.1371/journal.pone.0098878 Gent JF, Kezik JM, Hill ME, Tsai E, Li DW, Leaderer BP. Household mold and dust allergens: exposure, sensitization and childhood asthma morbidity. Environ Res. 2012;118:86-93. doi:10.1016/j.envres.2012.07.005
8 Gent JF, Kezik JM, Hill ME, Tsai E, Li DW, Leaderer BP. Household mold and dust allergens: exposure, sensitization and childhood asthma morbidity. Environ Res. 2012;118:86-93. doi:10.1016/j.envres.2012.07.005 Pongracic JA, O’Connor GT,
Muilenberg ML, et al. Differential effects of outdoor versus indoor fungal spores on asthma morbidity in inner-city children. J Allergy Clin Immunol. 2010;125(3):593-599. doi:10.1016/j.jaci.2009.10.036
9 Pongracic JA, O’Connor GT, Muilenberg ML, et al. Differential effects of outdoor versus indoor fungal spores on asthma morbidity in inner-city children. J Allergy Clin Immunol. 2010;125(3):593-599. doi:10.1016/j.jaci.2009.10.036 Segura-Medina P, Vargas MH, Aguilar-Romero JM, Arreola-Ramírez JL, Miguel-Reyes JL, Salas-Hernández J. Mold burden in house dust and its relationship with asthma control. Respir Med. 2019;150:74-80. doi:10.1016/j.rmed.2019.02.014
10 Burr ML, Matthews IP, Arthur RA, et al. Effects on patients with asthma of eradicating visible indoor mould: a randomised controlled trial. Thorax. 2007;62(9):767-772. doi:10.1136/thx.2006.070847
11 https://www.asthma.org.uk/ and American Lung Association www.lung.org/blog/mold-and-asthma
12 Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581-1592. doi:10.1016/S0140-6736(14)60617-6
13 Tiotiu AI, Novakova P, Nedeva D, et al. Impact of Air Pollution on Asthma Outcomes. Int J Environ Res Public Health. 2020;17(17):6212. Published 2020 Aug 27. doi:10.3390/ijerph17176212
14 Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ Int. 2017;100:1-31. doi:10.1016/j.envint.2016.11.012
15 Jung CR, Chen WT, Tang YH, Hwang BF. Fine particulate matter exposure during pregnancy and infancy and incident asthma. J Allergy Clin Immunol. 2019;143(6):2254-2262.e5. doi:10.1016/j.jaci.2019.03.024 Silvestri M, Franchi S, Pistorio A, Petecchia L, Rusconi F. Smoke exposure, wheezing, and asthma development: a systematic review
and meta-analysis in unselected birth cohorts. Pediatr Pulmonol. 2015;50(4):353-362. doi:10.1002/ppul.23037
16 World Health Organization:https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants Tiotiu AI, Novakova P, Nedeva D, et al. Impact of Air Pollution on Asthma Outcomes. Int J Environ Res Public Health. 2020;17(17):6212. Published 2020 Aug 27. doi:10.3390/ijerph17176212
17 Toppila-Salmi S, Luukkainen AT, Xu B, et al. Maternal smoking during pregnancy affects adult onset of asthma in offspring: a follow up from birth to age 46 years. Eur Respir J. 2020;55(6):1901857. Published 2020 Jun 11. doi:10.1183/13993003.01857-2019
18 Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J. 2004;24(5):822-833. doi:10.1183/09031936.04.00039004
19 Sippel JM, Pedula KL, Vollmer WM, Buist AS, Osborne ML. Associations of smoking with hospital-based care and quality of life in patients with obstructive airway disease. Chest. 1999;115(3):691-696. doi:10.1378/chest.115.3.691
20 Tønnesen P., Pisinger C., Hvidberg S., Wennike P., Bremann L., Westin A., Thomsen C., Nilsson F. Effects of smoking cessation and reduction in asthmatics. Nicotine Tob. Res. 2005;7:139–148. doi: 10.1080/14622200412331328411.
21 American Lung Association https://www.lung.org/blog/hows-the-air-in-thereasthma.ca/3-ways-to-improve-your-indoor-air-quality-manage-asthma/
22 American Lung Association
23 Tiotiu AI, Novakova P, Nedeva D, et al. Impact of Air Pollution on Asthma Outcomes. Int J Environ Res Public Health. 2020;17(17):6212. Published 2020 Aug 27. doi:10.3390/ijerph17176212 American Academy of Allergy, Asthma, & Immunology https://www.aaaai.org/Toolsfor-the-Public/Conditions-Library/Asthma/Your-Questions-Answered-on-Air-Pollution-
and-Asthm Asthma and Lung UK https://www.asthma.org.uk/advice/triggers/pollution/ American Lung Association: https://www.lung.org/clean-air/outdoors/10-tips-to-protect-yourself
24 Roberts G, Lack G. Food allergy and asthma--what is the link?. Paediatr Respir Rev. 2003;4(3):205-212. doi:10.1016/s1526-0542(03)00058-7
25 Foong RX, du Toit G, Fox AT. Mini Review - Asthma and Food Allergy. Curr Pediatr Rev. 2018;14(3):164-170. doi:10.2174/1573396314666180507121136
26 Bedolla-Pulido TR, Bedolla-Barajas M, Uribe-Cota B, González-Mendoza T, Morales-Romero J, Mariscal-Castro J. Alergia a alimentos en adultos con enfermedades respiratorias alérgicas: prevalencia y manifestaciones clínicas [Allergy to food in adults with allergic respiratory diseases: prevalence and clinical manifestations]. Rev Alerg Mex. 2019;66(1):1-8. doi:10.29262/ram.v66i1.400
27 Vassilopoulou, E., Konstantinou, G. N., Dimitriou, A., Manios, Y., Koumbi, L., & Papadopoulos, N. G. (2020). The Impact of Food Histamine Intake on Asthma Activity: A Pilot Study. Nutrients, 12(11), 3402. https://doi.org/10.3390/nu12113402
28 Son, J. H., Chung, B. Y., Kim, H. O., & Park, C. W. (2018). A Histamine-Free Diet Is Helpful for Treatment of Adult Patients with Chronic Spontaneous Urticaria. Annals of dermatology, 30(2), 164–172. https://doi.org/10.5021/ad.2018.30.2.164
29 Vassilopoulou, Emilia & Konstantinou, George & Dimitriou, Anastasia & Manios, Yannis & Koumbi, Lemonica & Papadopoulos, Nikolaos. (2020). The Impact of Food Histamine Intake on Asthma Activity: A Pilot Study. Nutrients. 12. 3402. 10.3390/nu12113402.
30 Sánchez-Pérez, S., Comas-Basté, O., Veciana-Nogués, M. T., Latorre-Moratalla, M. L., & Vidal-Carou, M. C. (2021). Low-Histamine Diets: Is the Exclusion of Foods Justified by Their Histamine Content?. Nutrients, 13(5), 1395. https://doi.org/10.3390/nu13051395
31 Christ A, Lauterbach M, Latz E. Western Diet and the Immune System: An Inflammatory Connection. Immunity. 2019;51(5):794-811. doi:10.1016/j.immuni.2019.09.020
32 Guilleminault L, Williams EJ, Scott HA, Berthon BS, Jensen M, Wood LG. Diet and Asthma: Is It Time to Adapt Our Message?. Nutrients. 2017;9(11):1227. Published 2017 Nov 8. doi:10.3390/nu9111227
33 Scott HA, Gibson PG, Garg ML, et al. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Exp Allergy. 2013;43(1):36-49. doi:10.1111/cea.12004
34 DeChristopher LR, Uribarri J, Tucker KL. Intakes of apple juice, fruit drinks and soda are associated with prevalent asthma in US children aged 2-9 years. Public Health Nutr. 2016;19(1):123-130. doi:10.1017/S1368980015000865 Castro-Rodriguez JA, Ramirez-Hernandez M, Padilla O, Pacheco-Gonzalez RM, Pérez-Fernández V, Garcia-Marcos
L. Effect of foods and Mediterranean diet during pregnancy and first years of life on wheezing, rhinitis and dermatitis in preschoolers. Allergol Immunopathol (Madr). 2016;44(5):400-409. doi:10.1016/j.aller.2015.12.002
35 Ensiyeh Seyedrezazadeh, Masoud Pour Moghaddam, Khalil Ansarin, Mohammad Reza Vafa, Sangita Sharma, Fariba Kolahdooz, Fruit and vegetable intake and risk ofwheezing and asthma: a systematic review and meta-analysis, Nutrition Reviews, Volume 72, Issue 7, 1 July 2014, Pages 411–428, https://doi.org/10.1111/nure.12121 Hosseini B, Berthon BS, Wark P, Wood LG. Effects of Fruit and Vegetable Consumption on Risk of Asthma, Wheezing and Immune Responses: A Systematic Review and Meta-Analysis. Nutrients. 2017;9(4):341. Published 2017 Mar 29. doi:10.3390/nu9040341
36 Patel B.D., Welch A.A., Bingham S.A., Luben R.N., Day N.E., Khaw K.T., Lomas D.A., Wareham N.J. Dietary antioxidants and asthma in adults. Thorax. 2006;61:388–393. doi: 10.1136/thx.2004.024935. Wood L.G., Garg M.L., Smart J.M., Scott H.A., Barker D., Gibson P.G. Manipulating antioxidant intake in asthma: A randomized controlled trial. Am. J. Clin. Nutr. 2012;96:534–543. doi: 10.3945/ajcn.111.032623.
37 Whyand, T., Hurst, J.R., Beckles, M. et al. Pollution and respiratory disease: can diet or supplements help? A review. Respir Res 19, 79 (2018). https://doi.org/10.1186/s12931-018-0785-0
38 Korn S, Hübner M, Jung M, Blettner M, Buhl R. Severe and uncontrolled adult asthma is associated with vitamin D insufficiency and deficiency. Respir Res. 2013;14(1):25. Published 2013 Feb 22. doi:10.1186/1465-9921-14-25 Litonjua AA. Childhood asthma may be a consequence of vitamin D deficiency. Curr Opin Allergy Clin Immunol. 2009;9(3):202-207. doi:10.1097/ACI.0b013e32832b36cd
39 Kerley CP, Elnazir B, Faul J, Cormican L. Vitamin D as an adjunctive therapy in asthma. Part 2: A review of human studies. Pulm Pharmacol Ther. 2015;32:75-92. doi:10.1016/j.pupt.2015.02.010
40 Wang M, Liu M, Wang C, et al. Association between vitamin D status and asthma control: A meta-analysis of randomized trials. Respir Med. 2019;150:85-94. doi:10.1016/j.rmed.2019.02.016
41 Yan YX, Li YN. Zhongguo Dang Dai Er Ke Za Zhi. 2019;21(7):724-729. doi:10.7499/j.issn.1008-8830.2019.07.020
42 Canguven O, El Ansari W, Yassin A. Vitamin D Supplementation As a Potential therapeutic Mediator in Asthma: Does Dose Really Matter? a Critical Review of the Literature. Aging Male. 2020;23(4):300-307. doi:10.1080/13685538.2018.1506433
43 Fantidis P, Ruiz Cacho J, Marín M, Madero Jarabo R, Solera J, Herrero E. Intracellular (polymorphonuclear) magnesium content in patients with bronchial asthma between attacks. J R Soc Med. 1995 Aug;88(8):441-5. PMID: 7562826; PMCID: PMC1295297.
44 Abuabat F, AlAlwan A, Masuadi E, Murad MH, Jahdali HA, Ferwana MS. The role of oral magnesium supplements for the management of stable bronchial asthma: a systematic review and meta-analysis. NPJ Prim Care Respir Med. 2019;29(1):4. Published 2019 Feb 18. doi:10.1038/s41533-019-0116-z
45 Gontijo-Amaral, C., Ribeiro, M., Gontijo, L. et al. Oral magnesium supplementation in asthmatic children: a double-blind randomized placebo-controlled trial. Eur J Clin Nutr 61, 54–60 (2007). https://doi.org/10.1038/sj.ejcn.1602475
46 Kazaks, Alexandra G., et al. “Effect of oral magnesium supplementation on measures of airway resistance and subjective assessment of asthma control and quality of life in men and women with mild to moderate asthma: a randomized placebo-controlled trial.” Journal of Asthma 47.1 (2010): 83-92.
47 Yu H, Su X, Lei T, Zhang C, Zhang M, Wang Y, Zhu L, Liu J. Effect of Omega-3 Fatty Acids on Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Chron Obstruct Pulmon Dis. 2021 Sep 23;16:2677-2686. doi: 10.2147/COPD.S331154. PMID: 34588776; PMCID: PMC8476109.
48 Stoodley I, Garg M, Scott H, Macdonald-Wicks L, Berthon B, Wood L. Higher Omega- 3 Index Is Associated with Better Asthma Control and Lower Medication Dose: A Cross-Sectional Study. Nutrients. 2019;12(1):74. Published 2019 Dec 27. doi:10.3390/nu12010074
49 Okamoto M, Mitsunobu F, Ashida K, et al. Effects of dietary supplementation with n-3 fatty acids compared with n-6 fatty acids on bronchial asthma. Intern Med. 2000;39(2):107-111. doi:10.2169/internalmedicine.39.10
50 Emelyanov A, Fedoseev G, Krasnoschekova O, Abulimity A, Trendeleva T, Barnes PJ. Treatment of asthma with lipid extract of New Zealand green-lipped mussel: a randomised clinical trial. Eur Respir J. 2002;20(3):596-600. doi:10.1183/09031936.02.02632001
51 de Luis DA, León R, Izaola O. Influencia de la ingesta de los ácidos grasos Omega 3 en el asma [Influence of omega 3 fatty acid dietary intake on asthma]. 351 Rev Clin Esp. 2007;207(1):24-25. doi:10.1157/13098496
52 Bazan-Socha S, Wójcik K, Olchawa M, et al. Increased Oxidative Stress in Asthma-Relation to Inflammatory Blood and Lung Biomarkers and Airway Remodeling Indices. Biomedicines. 2022;10(7):1499. Published 2022 Jun 24. doi:10.3390/biomedicines10071499
53 Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci Ö. Oxidative stress in asthma: Part of the puzzle. Pediatr Allergy Immunol. 2018;29(8):789-800. doi:10.1111/pai.12965 Zajac D. Mineral Micronutrients in Asthma. Nutrients. 2021;13(11):4001.
Published 2021 Nov 10. doi:10.3390/nu13114001
54 Secor ER Jr, Szczepanek SM, Castater CA, Adami AJ, Matson AP, Rafti ET, Guernsey L, Natarajan P, McNamara JT, Schramm CM, Thrall RS, Silbart LK. Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells. Evid Based Complement Alternat Med. 2013;2013:702196. doi: 10.1155/2013/702196. Epub 2013
Dec 5. PMID: 24381635; PMCID: PMC3870104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870104/
55 Secor, E. R., Jr, Shah, S. J., Guernsey, L. A., Schramm, C. M., & Thrall, R. S. (2012). Bromelain limits airway inflammation in an ovalbumin-induced murine model of established asthma. Alternative therapies in health and medicine, 18(5), 9–17.
56 Chen M, Sun Y, Wu Y. Lower circulating zinc and selenium levels are associated with an increased risk of asthma: evidence from a meta-analysis. Public Health Nutr. 2020;23(9):1555-1562. doi:10.1017/S1368980019003021
57 Greene LS. Asthma and oxidant stress: nutritional, environmental, and genetic risk factors. J Am Coll Nutr. 1995;14(4):317-324. doi:10.1080/07315724.1995.10718516
58 Hu G, Cassano PA. Antioxidant nutrients and pulmonary function: the Third National Health and Nutrition Examination Survey (NHANES III). Am J Epidemiol. 2000;151(10):975-981. doi:10.1093/oxfordjournals.aje.a010141
59 Hu G, Cassano PA. Antioxidant nutrients and pulmonary function: the Third National Health and Nutrition Examination Survey (NHANES III). Am J Epidemiol. 2000;151(10):975-981. doi:10.1093/oxfordjournals.aje.a010141
60 F. Gazdík, J. Kadrabová, K. Gazdíková Decreased consumption of corticosteroids after selenium supplementation in corticoid-dependent asthmatics Bratisl Med J, 103 (2002), pp. 22-25
61 Devirgiliis C, Zalewski PD, Perozzi G, Murgia C. Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res. 2007;622(1-2):84-93. doi:10.1016/j.mrfmmm. 2007.01.013 Soutar A, Seaton A, Brown K. Bronchial reactivity and dietary antioxidants. Thorax. 1997;52(2):166-170. doi:10.1136/thx.52.2.166
62 Rerksuppaphol S, Rerksuppaphol L. Zinc Supplementation in Children with Asthma Exacerbation. Pediatr Rep. 2016;8(4):6685. Published 2016 Dec 9. doi:10.4081/pr.2016.6685
63 Olin J T, Wechsler M E. Asthma: pathogenesis and novel drugs for treatment BMJ 2014; 349 :g5517 doi:10.1136/bmj.g5517
64 Tecklenburg SL, Mickleborough TD, Fly AD, Bai Y, Stager JM. Ascorbic acid supplementation attenuates exercise-induced bronchoconstriction in patients with asthma. Respir Med. 2007;101(8):1770-1778. doi:10.1016/j.rmed.2007.02.014
65 Omenaas E, Fluge O, Buist AS, Vollmer WM, Gulsvik A. Dietary vitamin C intake is inversely related to cough and wheeze in young smokers. Respir Med 2003;97:134–142
66 Romieu I, Sienra-Monge JJ, Ramírez-Aguilar M, et al. Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med. 2002;166(5):703-709. doi:10.1164/rccm.2112074
67 Barnes LA, Leach M, Anheyer D, Brown D, Carè J, Lauche R, Medina DN, Pinder TA, Bugarcic A, Steel A. The effects of Hedera helix on viral respiratory infections in humans: A rapid review. Adv Integr Med. 2020 Dec;7(4):222-226. doi: 10.1016/j.
aimed.2020.07.012. Epub 2020 Aug 13. PMID: 32837900; PMCID: PMC7424313.
68 Baharara, H., Moghadam, A.T., Sahebkar, A., Emami, S.A., Tayebi, T., Mohammadpour, A.H. (2021). The Effects of Ivy (Hedera helix) on Respiratory Problems and Cough in Humans: A Review. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham.
https://doi.org/10.1007/978-3-030-73234-9_23
69 Zeil S, Schwanebeck U, Vogelberg C. Tolerance and effect of an add-on treatment with a cough medicine containing ivy leaves dry extract on lung function in children with bronchial asthma. Phytomedicine. 2014;21(10):1216-1220. doi:10.1016/j.phymed.2014.05.006
70 Bücking S. Assessment of the Efficacy and Safety of Ivy Leaf (Hedera helix) Cough Syrup Compared with Acetylcysteine in Adults and Children with Acute Bronchitis. Evid Based Complement Alternat Med. 2020;2020:1910656. Published 2020 May 4. doi:10.1155/2020/1910656
71 Schaefer A, Kehr MS, Giannetti BM, Bulitta M, Staiger C. A randomized, controlled, double-blind, multi-center trial to evaluate the efficacy and safety of a liquid containing ivy leaves dry extract (EA 575®) vs. placebo in the treatment of adults with acute cough. Pharmazie. 2016;71(9):504-509.
72 Schmidt M, Thomsen M, Schmidt U. Suitability of ivy extract for the treatment of paediatric cough. Phytother Res. 2012;26(12):1942-1947. doi:10.1002/ptr.4671
73 Chen J, Liu X, Li Z, et al. A Review of Dietary Ziziphus jujuba Fruit (Jujube): Developing Health Food Supplements for Brain Protection. Evid Based Complement Alternat Med. 2017;2017:3019568. doi:10.1155/2017/3019568
74 Jiaqi Ma, Xuemin Chen, Lei Zhang, Liyan Ma, Jiangui Li, Jingming Li, Jiachen Zang, The stability and absorption of naturally occurring cAMP by its weak interactions with jujube polysaccharides were greatly improved. Food Hydrocolloids,Vol. 133, 2022. ISSN 0268-005X, https://doi.org/10.1016/j.foodhyd.2022.107957.
75 Ninave PB, Patil SD. Antiasthmatic potential of Zizyphus jujuba Mill and Jujuboside B. - Possible role in the treatment of asthma. Respir Physiol Neurobiol. 2019;260:28-36. doi:10.1016/j.resp.2018.12.001
76 Kim, Y., Oh, J. and Kim, J. (2020), Anti-inflammatory Effect of Hydrolyzed Jujube Ethanolic Extract. The FASEB Journal, 34: 1-1. https://doi.org/10.1096/fasebj.2020.34. s1.07063 Suresh R. Naik, Sushant Bhagat, Priyank D. Shah, Abhishek A. Tare, Deepa Ingawale, Raju R. Wadekar, Evaluation of anti-allergic and anti-anaphylactic activity of ethanolic extract of Zizyphus jujuba fruits in rodents, Revista Brasileira de Farmacognosia, Volume 23, Issue 5, 2013. https://doi.org/10.1590/S0102-695X2013000500014.
77 Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase Zhao Y, Zhang X, Li J, Bian Y, Sheng M, et al. (2016) Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase. PLOS ONE 11(2): e0149386. https://doi.org/10.1371/journal.pone.0149386
78 Tao Z, Jin W, Ao M, Zhai S, Xu H , Yu L . Evaluation of the anti-inflammatory properties of the active constituents in Ginkgo biloba for the treatment of pulmonary diseases. Food Funct. 2019;10(4):2209-2220. doi:10.1039/c8fo02506a Tang YJ, Xu YJ, Zhang ZX. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2006;26 Suppl:47-50.
79 Mahmoud F, Abul H, Onadeko B, Khadadah M, Haines D, Morgan G. In vitro effects of Ginkgolide B on lymphocyte activation in atopic asthma: comparison with cyclosporin A. Jpn J Pharmacol. 2000;83(3):241-245. doi:10.1254/jjp.83.241
80 Li, Mh., Yang, By., Yu, H. et al. Clinical observation of the therapeutic effect of Ginkgo leaf concentrated oral liquor on bronchial asthma. CJIM 3, 264–267 (1997). https://doi.org/10.1007/BF02934827 Tang Y, Xu Y, Xiong S, et al. The effect of Ginkgo Biloba extract on the expression of PKCalpha in the inflammatory cells and the level of IL-5 in induced sputum of asthmatic patients. J Huazhong Univ Sci Technolog Med Sci. 2007;27(4):375-380. doi:10.1007/s11596-007-0407-4
81 Wilkens, J., Wilkens, H., Uffmann, J., Bovers, J., Fabel, H. and Frolich, J. (1990), Effects of a PAF-antagonist (BN 52063) on bronchoconstriction and platelet activation during exercise induced asthma. British Journal of Clinical Pharmacology, 29: 85-91. https://doi.org/10.1111/j.1365-2125.1990.tb03606.x
82 Jiahui ZHENG; Guoshi WAN; Yuanxiu ZHENG; Fangfang HUANG; Zhumei WANG. Effects of ginkgo biloba tablets plus combined with routine therapy on HPA axis in patients with steroid-dependent asthma Chinese Journal of Immunology; (12): 97-100, 2016.
83 Arzu Ucar Turker, N.D Camper, Biological activity of common mullein, a medicinal plant, Journal of Ethnopharmacology,Volume 82, Issues 2–3, 2002, Pages 117-125, ISSN 0378-8741, https://doi.org/10.1016/S0378-8741(02)00186-1.
84 Blanco-Salas J, Hortigón-Vinagre MP, Morales-Jadán D, Ruiz-Téllez T. Searching for Scientific Explanations for the Uses of Spanish Folk Medicine: A Review on the Case of Mullein (Verbascum, Scrophulariaceae). Biology. 2021; 10(7):618. https://doi.org/10.3390/biology10070618
85 Saeidi, Karamatollah, and Zahra Lorigooini. “Determination of mucilage content of mullein (Verbascum songaricum) populations.” Journal of Pharmaceutical Sciences and Research 9.12 (2017): 2641-2643.
86 Turker, A. U., & Gurel, E. (2005). Common mullein (Verbascum thapsus L.): recent advances in research. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(9), 733-739
87 Yang X., Li Y., He Y., et al. Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process. International Immunopharmacology. 2015;26(2):401–408. doi: 10.1016/j.intimp.2015.04.017. Kim H. G., Shrestha B., Lim S. Y., et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW 264.7 macrophage cells. European Journal of Pharmacology. 2006;545(2-3):192–199. doi: 10.1016/j.ejphar.2006.06.047.
88 Wang N, Li J, Huang X, Chen W, Chen Y. Herbal Medicine Cordyceps sinensis Improves Health-Related Quality of Life in Moderate-to-Severe Asthma. Evid Based Complement Alternat Med. 2016;2016:6134593. doi:10.1155/2016/6134593
89 Bhardwaj N, Katyal P, Sharma AK. Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent Pat Inflamm Allergy Drug Discov. 2014;8(2):104-17. doi:10.2174/1872213x08666140619110657. PMID:24948193
90 Li Y, Li M, Wang R, Wang B, Athari SS, Wang J. Ganoderma modulates allergic asthma pathologic features via anti-inflammatory effects. Respir Physiol Neurobiol. 2022;299:103843. doi:10.1016/j.resp.2022.103843 Chen ML, Lin BF. Effects of triterpenoid-rich extracts of Ganoderma tsugae on airway hyperreactivity and Th2 responses in vivo. Int Arch Allergy Immunol. 2007;143(1):21-30. doi:10.1159/000098222
91 Roschek B Jr, Fink RC, McMichael M, Alberte RS. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phytother Res. 2009;23:920-6. CrossRef 27. Mittman P. Randomized, double-blind study of freezedried Urtica dioica in the treatment of allergic rhinitis. Planta Med. 1990;56:44-7.- Zemmouri, H., Sekiou, O., Ammar, S., El Feki, A., Bouaziz, M., Messarah, M., & Boumendjel, A. (2017). Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model. Pharmaceutical biology, 55(1), 1561-1568.
https://www.tandfonline.com/doi/full/10.1080/13880209.2017.1310905
92 Said, A. Ait Haj, et al. “Highlights on nutritional and therapeutic value of stinging nettle (Urtica dioica).” International Journal of Pharmacy and Pharmaceutical Sciences 7.10 (2015): 8-14. APA
93 Bakhshaee M, Mohammad Pour AH, Esmaeili M, et al. Efficacy of Supportive Therapy of Allergic Rhinitis by Stinging Nettle (Urtica dioica) root extract: a Randomized, Double-Blind, Placebo- Controlled, Clinical Trial. Iran J Pharm Res. 2017;16(Suppl):112-118
94 M. Irani, R. Choopani, S. Esmaeili, T. Dargahi, S.M. Athari, S.S. Athari. Effect of nettle seed on immune response in a murine model of allergic asthma. Revue Française d’Allergologie, Volume 60, Issue 5, 2020, Pages 417-422, ISSN 1877-0320, https://doi.org/10.1016/j.reval.2020.03.007.
95 Bone, K. (2009). The Ultimate Herbal Compendium: A desktop guide for herbal 352 prescribers
96 Ziment, I. (2002). Herbal antitussives. Pulmonary Pharmacology & Therapeutics, 15(3), 327-333.
97 Shavitt RG, Gentil V, Mandetta R. The association of panic/agoraphobia and asthma. Contributing factors and clinical implications. Gen Hosp Psychiatry. 1992;14(6):420-423. doi:10.1016/0163-8343(92)90010-8
98 Lehrer, P.M. Emotionally Triggered Asthma: A Review of Research Literature and Some Hypotheses for Self-Regulation Therapies. Appl Psychophysiol Biofeedback 23, 13–41 (1998). https://doi.org/10.1023/A:1022170028979
99 Yadav P, Jain PK, Sharma BS, Sharma M. Yoga Therapy as an Adjuvant in Management of Asthma. Indian J Pediatr. 2021;88(11):1127-1134. doi:10.1007/s12098-021-03675-y
100 Vempati, R., Bijlani, R.L. & Deepak, K.K. The efficacy of a comprehensive lifestyle modification programme based on yoga in the management of bronchial asthma: a randomized controlled trial. BMC Pulm Med 9, 37 (2009). https://doi.org/10.1186/1471-2466-9-37
101 Yang ZY, Zhong HB, Mao C, et al. Yoga for asthma. Sao Paulo Med J. 2016;134(4):368. doi:10.1590/1516-3180.20161344T2
102 Paudyal P, Jones C, Grindey C, Dawood R, Smith H. Meditation for asthma: Systematic review and meta-analysis. J Asthma. 2018;55(7):771-778. doi:10.1080/02770903.2017.1365887
103 Liu CF, Chien LW. Efficacy of acupuncture in children with asthma: a systematic review. Ital J Pediatr. 2015;41:48. Published 2015 Jul 7. doi:10.1186/s13052-015-0155-1
104 Jiang C, Jiang L, Qin Q. Conventional Treatments plus Acupuncture for Asthma in Adults and Adolescent: A Systematic Review and Meta-Analysis. Evid Based Complement Alternat Med. 2019;2019:9580670. Published 2019 Jan 17.
doi:10.1155/2019/9580670
105 Frank DL, Khorshid L, Kiffer JF, Moravec CS, McKee MG. Biofeedback in medicine: who, when, why and how?. Ment Health Fam Med. 2010;7(2):85-91.
106 Paul M. Lehrer, Evgeny Vaschillo, Bronya Vaschillo, Shou-En Lu, Anthony Scardella, Mahmood Siddique, Robert H. Habib. Biofeedback Treatment for Asthma. Chest, Vol 126, Issue 2, 2004, 352-361, ISSN 0012-3692, https://doi.org/10.1378/chest.126.2.352.
107 Taghizadeh N, Eslaminejad A, Raoufy MR. Protective effect of heart rate variability biofeedback on stress-induced lung function impairment in asthma. Respir Physiol Neurobiol. 2019;262:49-56. doi:10.1016/j.resp.2019.01.011
108 Allam, V.S.R.R., Paudel, K.R., Gupta, G. et al. Nutraceuticals and mitochondrial oxidative stress: bridging the gap in the management of bronchial asthma. Environ Sci Pollut Res (2022). https://doi.org/10.1007/s11356-022-21454-w
109 Patel R, Naqvi SA, Griffiths C, Bloom CI. Systemic adverse effects from inhaled corticosteroid use in asthma: a systematic review. BMJ Open Respir Res. 2020;7(1):e000756. doi:10.1136/bmjresp-2020-000756


Ch. 34: Lungs And COPD Protocol

1 Shergis, J. L., Di, Y. M., Zhang, A. L., Vlahos, R., Helliwell, R., Ye, J. M., & Xue, C. C. (2014). Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complementary Therapies in Medicine, 22(5), 944-953
2 Shergis, J. L., Di, Y. M., Zhang, A. L., Vlahos, R., Helliwell, R., Ye, J. M., & Xue, C. C. (2014). Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complementary Therapies in Medicine, 22(5), 944-953
3 Scoditti E, Massaro M, Garbarino S, Toraldo DM. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment. Nutrients. 2019 Jun 16;11(6):1357. doi: 10.3390/nu11061357. PMID: 31208151; PMCID: PMC6627281
4 Scoditti E, Massaro M, Garbarino S, Toraldo DM. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment. Nutrients. 2019 Jun 16;11(6):1357. doi: 10.3390/nu11061357. PMID: 31208151; PMCID: PMC6627281
5 Scoditti E, Massaro M, Garbarino S, Toraldo DM. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment. Nutrients. 2019 Jun 16;11(6):1357. doi: 10.3390/nu11061357. PMID: 31208151; PMCID: PMC6627281
6 Asha’ari ZA, Ahmad MZ, Jihan WS, Che CM, Leman I. Ingestion of honey improves the symptoms of allergic rhinitis: evidence from a randomized placebo-controlled trial in the East coast of Peninsular Malaysia. Ann Saudi Med. 2013 Sep-Oct;33(5):469-75. doi: 10.5144/0256-4947.2013.469. PMID: 24188941; PMCID: PMC6074882
7 Bakhshaee, M., Mohammad Pour, A. H., Esmaeili, M., Jabbari Azad, F., Alipour Talesh, G., Salehi, M., & Noorollahian Mohajer, M. (2017). Efficacy of Supportive Therapy of Allergic Rhinitis by Stinging Nettle (Urtica dioica) root extract: a Randomized, Double-Blind, Placebo- Controlled, Clinical Trial. Iranian journal of pharmaceutical research: IJPR,
16(Suppl), 112–118
8 Mittman P. (1990). Randomized, double-blind study of freeze-dried Urtica dioica in the treatment of allergic rhinitis. Planta medica, 56(1), 44–47. https://doi.org/10.1055/s-2006-960881
9 Bone, K. (2009). The Ultimate Herbal Compendium: A desktop guide for herbal prescribers Klotter, J. (2006). Coughs, cough medicines, & upper respiratory infections. Townsend Letter: The Examiner of Alternative Medicine, (281), 38+. https://link.gale.com/apps/doc/A155218063/AONE?u=anon~42a579ea&sid=googleScholar&xid=9fdada15
10 Klotter, J. (2006). Coughs, cough medicines, & upper respiratory infections. Townsend Letter: The Examiner of Alternative Medicine, (281), 38+. https://link.gale.com/apps/doc/A155218063/AONEu=anon~42a579ea&sid=googleScholar&xid=9fdada15
11 Turker, A. U., & Camper, N. D. (2002). Biological activity of common mullein, a medicinal plant. Journal of ethnopharmacology, 82(2-3), 117-125
12 Gierlikowska, B., Gierlikowski, W., Bekier, K., Skalicka-Woźniak, K., Czerwińska, M. E., & Kiss, A. K. (2020). Inula helenium and Grindelia squarrosa as a source of compounds with anti-inflammatory activity in human neutrophils and cultured human respiratory epithelium. Journal of ethnopharmacology, 249, 112311. https://doi.org/10.1016/j.
jep.2019.112311
13 Benson, K. F., Stamets, P., Davis, R., Nally, R., Taylor, A., Slater, S., & Jensen, G. S. (2019). The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. BMC complementary and alternative medicine, 19(1), 342. https://doi.org/10.1186/s12906-019-2681-7
14 Lin Z. B. (2005). Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. Journal of pharmacological sciences, 99(2), 144–153. https://doi.org/10.1254/jphs.crj05008x
15 Wu TF, Chan YY, Shi WY, Jhong MT. Uncovering the Molecular Mechanism of Anti-Allergic Activity of Silkworm Pupa-Grown Cordyceps militaris Fruit Body. Am J Chin Med. 2017;45(3):497-513. doi: 10.1142/S0192415X17500306. Epub 2017 Apr 2. PMID: 28367714
16 Yang, L., Jiao, X., Wu, J., Zhao, J., Liu, T., Xu, J., ... & Dong, L. (2018). Cordyceps sinensis inhibits airway remodeling in rats with chronic obstructive pulmonary disease. Experimental and Therapeutic Medicine, 15(3), 2731-2738
17 Yue, G. G. L., Bik-San Lau, C., Fung, K. P., Leung, P. C., & Ko, W. H. (2008). Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. Journal of Ethnopharmacology, 117(1), 92-101
18 Fung, C. K., & Ko, W. H. (2012). Cordyceps extracts and the major ingredient, cordycepin: possible cellular mechanisms of their therapeutic effects on respiratory disease. In Respiratory Diseases. IntechOpen
19 Lin, C. H., Hsiao, Y. M., Ou, C. C., Lin, Y. W., Chiu, Y. L., Lue, K. H., ... & Ko, J. L. (2010). GMI, a Ganoderma immunomodulatory protein, down-regulates tumor necrosis factor α-induced expression of matrix metalloproteinase 9 via NF-κB pathway in human alveolar epithelial A549 cells. Journal of agricultural and food chemistry, 58(22), 12014-12021
20 Bhardwaj N, Katyal P, Sharma AK. Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent Pat Inflamm Allergy Drug Discov. 2014;8(2):104-17. doi:10.2174/1872213x08666140619110657. PMID: 24948193
21 Stavinoha, W.B., 1990. Study of the anti-inflammatory activity of Ganoderma lucidum. Presented at the Third Academic Joint Conference, pp: 201-208
22 Bone, K. (2009). The Ultimate Herbal Compendium: A desktop guide for herbal prescribers
23 Shergis, J. L., Di, Y. M., Zhang, A. L., Vlahos, R., Helliwell, R., Ye, J. M., & Xue, C. C. (2014). Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complementary Therapies in Medicine, 22(5), 944-953
24 Gross, D., Shenkman, Z., Bleiberg, B., Dayan, M., Gittelson, M., & Efrat, R. (2002). Ginseng improves pulmonary functions and exercise capacity in patients with COPD. Monaldi archives for chest disease, 57(5/6), 242-246
25 uo R, Pittler MH, Ernst E. Herbal medicines for the treatment of COPD: a systematic review. 2006. In: Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. York (UK): Centre for Reviews and Dissemination (UK); 1995-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK72798/
26 Journal of Applied Pharmaceutical Science Vol. 8(07), pp 132-140, July, 2018 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2018.8721 ISSN 2231-3354
27 Ivanov, I. G., Vrancheva, R. Z., Petkova, N. T., Tumbarski, Y., Dincheva, I. N., & Badjakov, I. K. (2019). Phytochemical compounds of anise hyssop (Agastache foeniculum) and antibacterial, antioxidant, and acetylcholinesterase inhibitory properties of its essential oil. Journal of Applied Pharmaceutical Science, 9(2), 072-078
28 Barnes LA, Leach M, Anheyer D, Brown D, Carè J, Lauche R, Medina DN, Pinder TA, Bugarcic A, Steel A. The effects of Hedera helix on viral respiratory infections in humans: A rapid review. Adv Integr Med. 2020 Dec;7(4):222-226. doi: 10.1016/j.
aimed.2020.07.012. Epub 2020 Aug 13. PMID: 32837900; PMCID: PMC7424313
29 Stansbury, J., Saunders, P. R., & Zampieron, E. (2013). The use of lobelia in the treatment of asthma and respiratory illness. Journal of Restorative Medicine, 2(1), 94-100
30 Pizzorno, J. E., Murray, M. T., & Joiner-Bey, H. (2016). Bronchitis and pneumonia. The Clinician’s Handbook of Natural Medicine, 147
31 Salem, S., Leghouchi, E., Soulimani, R., & Bouayed, J. (2021). Reduction of paw edema and liver oxidative stress in carrageenan-induced acute inflammation by Lobaria pulmonaria and Parmelia caperata, lichen species, in mice. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung.
Journal international de vitaminologie et de nutrition, 91(1-2), 143–151. https://doi.org/10.1024/0300-9831/a000620
32 Lu, Y., & Foo, L. Y. (2002). Polyphenolics of Salvia--a review. Phytochemistry, 59(2), 117–140. https://doi.org/10.1016/s0031-9422(01)00415-0
33 Bazarnova, Y., Politaeva, N., & Lyskova, N. (2018). Research for the lichen Usnea barbata metabolites. Zeitschrift fur Naturforschung. C, Journal of biosciences, 73(7-8), 291–296. https://doi.org/10.1515/znc-2017-0177
34 Khan, A. U., & Gilani, A. H. (2011). Blood pressure lowering, cardiovascular inhibitory and bronchodilatory actions of Achillea millefolium. Phytotherapy research: PTR, 25(4), 577–583. https://doi.org/10.1002/ptr.3303 https://pubmed.ncbi.nlm.nih.gov/20857434
35 Benedek, B., Rothwangl-Wiltschnigg, K., Rozema, E., Gjoncaj, N., Reznicek, G., Jurenitsch, J., Kopp, B., & Glasl, S. (2008). Yarrow (Achillea millefolium L. s.l.): pharmaceutical quality of commercial samples. Die Pharmazie, 63(1), 23–26
36 Wieland, L. S., Piechotta, V., Feinberg, T., Ludeman, E., Hutton, B., Kanji, S., Seely, D., & Garritty, C. (2021). Elderberry for prevention and treatment of viral 353 respiratory illnesses: a systematic review. BMC complementary medicine and therapies, 21(1), 112. https://doi.org/10.1186/s12906-021-03283-5
37 Wieland, L. S., Piechotta, V., Feinberg, T., Ludeman, E., Hutton, B., Kanji, S., Seely, D., & Garritty, C. (2021). Elderberry for prevention and treatment of viral respiratory illnesses: a systematic review. BMC complementary medicine and therapies, 21(1), 112. https://doi.org/10.1186/s12906-021-03283-5
38 Wieland LS, Piechotta V, Feinberg T, Ludeman E, Hutton B, Kanji S, Seely D, Garritty C. Elderberry for prevention and treatment of viral respiratory illnesses: a systematic review. BMC Complement Med Ther. 2021 Apr 7;21(1):112. doi: 10.1186/s12906-021-03283-5. PMID: 33827515; PMCID: PMC8026097
39 Kronbichler A, Effenberger M, Eisenhut M, Lee KH, Shin JI. Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view. Autoimmun Rev. 2020 Jul;19(7):102570. doi: 10.1016/j.autrev.2020.102570. Epub 2020 May 3. PMID: 32376397; PMCID: PMC7252097
40 Zhou, L-K., et al. (2020) Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discovery. doi.org/10.1038/s41421-020-00197-3
41 M.S. Nair, Y. Huang, D.A. Fidock, S.J. Polyak, J. Wagoner, M.J. Towler, P.J. Weathers, Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants, Journal of Ethnopharmacology, Volume 274, 2021, 114016, ISSN 0378-8741
42 Carr, A. C., & Maggini, S. (2017). Vitamin C and Immune Function. Nutrients, 9(11), 1211. https://doi.org/10.3390/nu9111211
43 Bucher A, White N. Vitamin C in the Prevention and Treatment of the Common Cold. Am J Lifestyle Med. 2016 Feb 9;10(3):181-183. doi: 10.1177/1559827616629092. PMID: 30202272; PMCID: PMC6124957. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124957/
44 Hughes, D. A., & Norton, R. (2009). Vitamin D and respiratory health. Clinical and experimental immunology, 158(1), 20–25. https://doi.org/10.1111/j.1365-2249.2009.04001.x
45 Yu H, Su X, Lei T, Zhang C, Zhang M, Wang Y, Zhu L, Liu J. Effect of Omega-3 Fatty Acids on Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Chron Obstruct Pulmon Dis. 2021 Sep 23;16:2677-2686. doi: 10.2147/COPD.S331154. PMID: 34588776; PMCID: PMC8476109
46 Mehrabi, S., Moradi, M. M., Khodamoradi, Z., & Nazarinia, M. A. (2020). Effects of N-acetylcysteine on Pulmonary Functions in Patients with Systemic Sclerosis: A Randomized Double Blind, Placebo Controlled Study. Current rheumatology reviews, 16(2), 149–157. https://doi.org/10.2174/1573397115666191212092608
47 Secor ER Jr, Szczepanek SM, Castater CA, Adami AJ, Matson AP, Rafti ET, Guernsey L, Natarajan P, McNamara JT, Schramm CM, Thrall RS, Silbart LK. Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells. Evid Based Complement Alternat Med. 2013;2013:702196. doi: 10.1155/2013/702196. Epub 2013
Dec 5. PMID: 24381635; PMCID: PMC3870104 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870104/
48 Secor, E. R., Jr, Shah, S. J., Guernsey, L. A., Schramm, C. M., & Thrall, R. S. (2012). Bromelain limits airway inflammation in an ovalbumin-induced murine model of established asthma. Alternative therapies in health and medicine, 18(5), 9–17
49 Cermelli, C., Fabio, A., Fabio, G., & Quaglio, P. (2008). Effect of eucalyptus essential oil on respiratory bacteria and viruses. Current microbiology, 56(1), 89–92. https://doi.org/10.1007/s00284-007-9045-0
50 Nogueira de Melo, G. A., Grespan, R., Fonseca, J. P., Farinha, T. O., Silva, E. L., Romero, A. L., Bersani-Amado, C. A., & Cuman, R. K. (2011). Rosmarinus officinalis L. essential oil inhibits in vivo and in vitro leukocyte migration. Journal of medicinal food, 14(9), 944–946. https://doi.org/10.1089/jmf.2010.0159
51 Sienkiewicz, M., Wasiela, M., & Głowacka, A. (2012). Aktywność przeciwbakteryjna olejku oreganowego (Origanum heracleoticum L.) wobec szczepów klinicznych Escherichia coli i Pseudomonas aeruginosa [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas
aeruginosa]. Medycyna doswiadczalna i mikrobiologia, 64(4), 297–307
52 Li, M., Zhu, L., Liu, B., Du, L., Jia, X., Han, L., & Jin, Y. (2016). Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia. Colloids and surfaces. B, Biointerfaces, 141, 408–416. https://doi.org/10.1016/j.colsurfb.2016.02.017
53 Park, J. H., Seo, M. W., Jung, H. C., Song, J. K., & Lee, J. M. (2021). Association between Health-Related Physical Fitness and Respiratory Diseases in Adolescents: An Age- and Gender-Matched Study. International journal of environmental research and public health, 18(12), 6655. https://doi.org/10.3390/ijerph18126655
54 https://www.lung.org/lung-health-diseases/wellness/breathing-exercises

Ch. 35: Sinusitis Protocol

1 Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, Brook I, Kumar KA, Kramper M, Orlandi RR, Palmer JN, Patel ZM, Peters A, Walsh SA, Corrigan MD (April 2015). “Clinical practice guideline (update): Adult Sinusitis Executive Summary”. Otolaryngology–Head and Neck Surgery. 152 (4): 598–609. doi:10.1177/0194599815574247. PMID 25833927. S2CID206469424
2 Reh DD, Higgins TS, Smith TL. Impact of tobacco smoke on chronic rhinosinusitis: a review of the literature. Int Forum Allergy Rhinol. 2012 Sep-Oct;2(5):362-9. doi: 10.1002/alr.21054. Epub 2012 Jun 13. PMID: 22696460; PMCID: PMC3443524
3 Brewer JH, Thrasher JD, Hooper D. Chronic illness associated with mold and mycotoxins: is naso-sinus fungal biofilm the culprit? Toxins (Basel). 2013 Dec 24;6(1):66-80. doi: 10.3390/toxins6010066. PMID: 24368325; PMCID: PMC3920250
4 Arca KN, Halker Singh RB. Dehydration and Headache. Curr Pain Headache Rep. 2021 Jul 15;25(8):56. doi: 10.1007/s11916-021-00966-z. PMID: 34268642; PMCID: PMC8280611
5 Egan M, Hickner J. Saline irrigation spells relief for sinusitis sufferers. J Fam Pract. 2009 Jan;58(1):29-32. PMID: 19141268; PMCID: PMC3183918
6 Vairo GL, Miller SJ, McBrier NM, Buckley WE. Systematic review of efficacy for manual lymphatic drainage techniques in sports medicine and rehabilitation: an evidence-based practice approach. J Man Manip Ther. 2009;17(3):e80-9. doi: 10.1179/
jmt.2009.17.3.80E. PMID: 20046617; PMCID: PMC2755111
7 Gowrishankar S, Muthumanickam S, Kamaladevi A, Karthika C, Jothi R, Boomi P, Maniazhagu D, Pandian SK. Promising phytochemicals of traditional Indian herbal steam inhalation therapy to combat COVID-19 - An in silico study. Food Chem Toxicol. 2021 Feb;148:111966. doi: 10.1016/j.fct.2020.111966. Epub 2021 Jan 4. PMID: 33412235; PMCID: PMC7780060
8 Ben-Arye, E., Dudai, N., Eini, A., Torem, M., Schiff, E., & Rakover, Y. (2011). Treatment of upper respiratory tract infections in primary care: a randomized study using aromatic herbs. Evidence-based complementary and alternative medicine: eCAM, 2011, 690346. https://doi.org/10.1155/2011/690346
9 Prall S, Bowles EJ, Bennett K, Cooke CG, Agnew T, Steel A, Hausser T. Effects of essential oils on symptoms and course (duration and severity) of viral respiratory infections in humans: A rapid review. Adv Integr Med. 2020 Dec;7(4):218-221. doi: 10.1016/j.aimed.2020.07.005. Epub 2020 Aug 3. PMID: 32837899; PMCID: PMC7398051 10 Kuo, Y. C., Tsai, W. J., Shiao, M. S., Chen, C. F., & Lin, C. Y. (1996). Cordyceps sinensis as an immunomodulatory agent. The American journal of Chinese medicine, 24(2), 111–125. https://doi.org/10.1142/S0192415X96000165
11 Hudson J, Vimalanathan S. Echinacea—A Source of Potent Antivirals for Respiratory Virus Infections. Pharmaceuticals (Basel). 2011 Jul 13;4(7):1019–31. doi: 10.3390/ph4071019. PMCID: PMC4058675
12 Wieland, L. S., Piechotta, V., Feinberg, T., Ludeman, E., Hutton, B., Kanji, S., Seely, D., & Garritty, C. (2021). Elderberry for prevention and treatment of viral respiratory illnesses: a systematic review. BMC complementary medicine and therapies, 21(1), 112. https://doi.org/10.1186/s12906-021-03283-5
13 Zakay-Rones, Z., Thom, E., Wollan, T., & Wadstein, J. (2004). Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. The Journal of international medical research, 32(2), 132–140. https://doi.org/10.1177/147323000403200205
14 Bayan L, Koulivand PH, Gorji A. Garlic: a review of potential therapeutic effects. Avicenna J Phytomed. 2014 Jan;4(1):1-14. PMID: 25050296; PMCID: PMC4103721
15 Mashhadi NS, Ghiasvand R, Askari G, Hariri M, Darvishi L, Mofid MR. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. Int J Prev Med. 2013 Apr;4(Suppl 1):S36-42. PMID: 23717767; PMCID: PMC3665023
16 Chu M, Ding R, Chu ZY, Zhang MB, Liu XY, Xie SH, Zhai YJ, Wang YD. Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor. BMC Complement Altern Med. 2014 Mar 6;14:89. doi: 10.1186/1472-6882-14-89. PMID: 24602493; PMCID: PMC3946165
17 Süleyman, H., Odabasoglu, F., Aslan, A., Cakir, A., Karagoz, Y., Gocer, F., Halici, M., & Bayir, Y. (2003). Anti-inflammatory and antiulcerogenic effects of the aqueous extract of Lobaria pulmonaria (L.) Hoffm. Phytomedicine: international
journal of phytotherapy and phytopharmacology, 10(6-7), 552–557. https://doi.org/10.1078/094471103322331539
18 Turker, A. U., & Gurel, E. (2005). Common mullein (Verbascum thapsus L.): recent advances in research. Phytotherapy research: PTR, 19(9), 733–739. https://doi.org/10.1002/ptr.1653
19 Saeed, S., & Tariq, P. (2009). Antibacterial activity of oregano (Origanum vulgare Linn.) against gram positive bacteria. Pakistan journal of pharmaceutical sciences, 22(4), 421–424
20 Lin Z. B. (2005). Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. Journal of pharmacological sciences, 99(2), 144–153. https://doi.org/10.1254/jphs.crj05008x
21 Satoh T, Trudler D, Oh C-K, Lipton SA. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer’s Disease, Parkinson’s Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants. 2022; 11(1):124. https://doi.org/10.3390/antiox11010124
22 Bakhshaee M, Mohammad Pour AH, Esmaeili M, Jabbari Azad F, Alipour Talesh G, Salehi M, Noorollahian Mohajer M. Efficacy of Supportive Therapy of Allergic Rhinitis by Stinging Nettle (Urtica dioica) root extract: a Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Iran J Pharm Res. 2017 Winter;16(Suppl):112-118. PMID: 29844782; PMCID: PMC5963652
23 Wu, S., & Xiao, D. (2016). Effect of curcumin on nasal symptoms and airflow in patients with perennial allergic rhinitis. Annals of allergy, asthma & immunology: official publication of the American College of Allergy, Asthma, & Immunology, 117(6), 697–702.e1. https://doi.org/10.1016/j.anai.2016.09.427
24 Pagano, C., Ceccarini, M. R., Calarco, P., Scuota, S., Conte, C., Primavilla, S., Ricci, M., & Perioli, L. (2019). Bioadhesive polymeric films based on usnic acid for burn wound treatment: Antibacterial and cytotoxicity studies. Colloids and surfaces. B, Biointerfaces, 178, 488–499. https://doi.org/10.1016/j.colsurfb.2019.03.001
25 African Journal of Pharmacy and Pharmacology Vol. 6(41), pp. 2895-2899, 8 November, 2012 Available online at http://www.academicjournals.org/AJPP DOI: 10.5897/AJPP12.397 ISSN 1996-0816 © 2012 Academic Journals
26 Fischer, W., Currais, A., Liang, Z., Pinto, A., & Maher, P. (2019). Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox biology, 21, 101089. https://doi.org/10.1016/j.redox.2018.101089354 27 Carr, A. C., & Maggini, S. (2017). Vitamin C and Immune Function. Nutrients, 9(11), 1211. https://doi.org/10.3390/nu9111211
28 Aranow C. Vitamin D and the immune system. J Investig Med. 2011 Aug;59(6):881-6. doi: 10.2310/JIM.0b013e31821b8755. PMID: 21527855; PMCID: PMC3166406
29 Yan F, Polk DB. Probiotics and immune health. Curr Opin Gastroenterol. 2011 Oct;27(6):496-501. doi: 10.1097/MOG.0b013e32834baa4d. PMID: 21897224; PMCID: PMC4006993
30 Nakamura, S., Hashimoto, Y., Mikami, M., Yamanaka, E., Soma, T., Hino, M., Azuma, A., & Kudoh, S. (2003). Effect of the proteolytic enzyme serrapeptase in patients with chronic airway disease. Respirology (Carlton, Vic.), 8(3), 316–320. https://doi.org/10.1046/j.1440-1843.2003.00482.x
31 Sivaramakrishnan, G., & Sridharan, K. (2018). Role of Serratiopeptidase After Surgical Removal of Impacted Molar: A Systematic Review and Meta-analysis. Journal of maxillofacial and oral surgery, 17(2), 122–128. https://doi.org/10.1007/s12663-017-0996-9


Ch. 36: Osteoporosis Protocol

1 Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364-376. doi:10.1016/S0140-6736(18)32112-3
2 Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag. 2018;14:2029-2049. Published 2018 Nov 6. doi:10.2147/TCRM.S138000
3 Panula J, Pihlajamäki H, Mattila VM, et al. Mortality and cause of death in hip fracture patients aged 65 or older: a population-based study. BMC Musculoskelet Disord. 2011;12:105. Published 2011 May 20. doi:10.1186/1471-2474-12-105
4 Negrete-Corona J, Alvarado-Soriano JC, Reyes-Santiago LA. Fractura de cadera como factor de riesgo en la mortalidad en pacientes mayores de 65 años. Estudio de casos y controles [Hip fracture as risk factor for mortality in patients over 65 years of age. Case-control study]. Acta Ortop Mex. 2014;28(6):352-362
5 Mundi S, Pindiprolu B, Simunovic N, Bhandari M. Similar mortality rates in hip fracture patients over the past 31 years. Acta Orthop. 2014;85(1):54-59. doi:10.3109/17453674.2013.878831
6 Katsoulis M, Benetou V, Karapetyan T, et al. Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med. 2017;281(3):300-310. doi:10.1111/joim.12586
7 Bijelic R, Milicevic S, Balaban J. Risk Factors for Osteoporosis in Postmenopausal Women. Med Arch. 2017;71(1):25-28. doi:10.5455/medarh.2017.71.25-28
8 Kelsey JL. Risk factors for osteoporosis and associated fractures. Public Health Rep. 1989;104 Suppl(Suppl):14-20
9 Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause. 2021;28(9):973-997. doi:10.1097/GME.0000000000001831
10 Maurel DB, Boisseau N, Benhamou CL, Jaffre C. Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int. 2012;23(1):1-16. doi:10.1007/s00198-011-1787-7
11 Abukhadir SS, Mohamed N, Mohamed N. Pathogenesis of alcohol-induced osteoporosis and its treatment: a review. Curr Drug Targets. 2013;14(13):1601-1610. doi:10.2174/13894501113146660231
12 Sampson HW. Alcohol’s harmful effects on bone. Alcohol Health Res World. 1998;22(3):190-194
13 Li H, Wallin M, Barregard L, et al. Smoking-Induced Risk of Osteoporosis Is Partly Mediated by Cadmium From Tobacco Smoke: The MrOS Sweden Study. J Bone Miner Res. 2020;35(8):1424-1429. doi:10.1002/jbmr.4014
14 Mędrela-Kuder E, Szymura K. Selected anti-health behaviours among women with osteoporosis. Rocz Panstw Zakl Hig. 2018;69(4):397-403. doi:10.32394/rpzh.2018.0046
15 Teucher B, Fairweather-Tait S. Dietary sodium as a risk factor for osteoporosis: where is the evidence?. Proc Nutr Soc. 2003;62(4):859-866. doi:10.1079/PNS2003300
16 Kim Y, Kim HY, Kim JH. Associations Between Reported Dietary Sodium Intake and Osteoporosis in Korean Postmenopausal Women: The 2008-2011 Korea National Health and Nutrition Examination Survey. Asia Pac J Public Health. 2017;29(5):430-439. doi:10.1177/1010539517712759
17 DiNicolantonio JJ, Mehta V, Zaman SB, O’Keefe JH. Not Salt But Sugar As Aetiological In Osteoporosis: A Review. Mo Med. 2018;115(3):247-252
18 Bonjour JP. Protein intake and bone health. Int J Vitam Nutr Res. 2011;81(2-3):134-142. doi:10.1024/0300-9831/a000063 Wengreen HJ, Munger RG, West NA, et al. Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. J Bone Miner Res. 2004;19(4):537-545. doi:10.1359/JBMR.040208
19 Cuenca-Sánchez M, Navas-Carrillo D, Orenes-Piñero E. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health. Adv Nutr. 2015;6(3):260-266. Published 2015 May 15. doi:10.3945/an.114.007716
20 Kerstetter JE, O’Brien KO, Insogna KL. Dietary protein, calcium metabolism, and skeletal homeostasis revisited. Am J Clin Nutr. 2003;78(3 Suppl):584S-592S. doi:10.1093/ajcn/78.3.584S
21 Hallström H, Byberg L, Glynn A, Lemming EW, Wolk A, Michaëlsson K. Long-term coffee consumption in relation to fracture risk and bone mineral density in women. Am J Epidemiol. 2013;178(6):898-909. doi:10.1093/aje/kwt062
22 Hasling C, Søndergaard K, Charles P, Mosekilde L. Calcium metabolism in postmenopausal osteoporotic women is determined by dietary calcium and coffee intake. J Nutr. 1992;122(5):1119-1126. doi:10.1093/jn/122.5.1119
23 1994;271(4):280-283. doi:10.1001/jama.1994.03510280042030
24 Douglas P. Kiel, David T. Felson, Marian T. Hannan, Jennifer J. Anderson, Peter W. F. Wilson, Caffeine and the Risk of Hip Fracture: The Framingham Study, American Journal of Epidemiology, Volume 132, Issue 4, October 1990, Pages 675–684, https://doi.org/10.1093/oxfordjournals.aje.a115709
25 Shea B, Wells G, Cranney A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr Rev. 2002;23(4):552-559. doi:10.1210/er.2001-7002
26 Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation [published correction appears in Osteoporos Int. 2016 Aug;27(8):2643-6]. Osteoporos Int. 2016;27(1):367-376. doi:10.1007/s00198-015-3386-5
27 Cano A, Chedraui P, Goulis DG, et al. Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide. Maturitas. 2018;107:7-12. doi:10.1016/j.maturitas. 2017.10.004
28 Holick, M.F. Optimal Vitamin D Status for the Prevention and Treatment of Osteoporosis. Drugs Aging 24, 1017–1029 (2007). https://doi.org/10.2165/00002512-200724120-00005
29 Cranney A, Horsley T, O’Donnell S, et al. Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess (Full Rep). 2007;(158):1-235
30 Castiglioni S, Cazzaniga A, Albisetti W, Maier JA. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients. 2013;5(8):3022-3033. Published 2013 Jul 31. doi:10.3390/nu5083022
31 Sharma R, Sharma P, Kumar P, Gupta G (2016) Role of magnesium in post-menopausal women with osteoporosis and osteopenia. Asian J Pharm Clin Res 9:198–199
32 Mederle OA, Balas M, Ioanoviciu SD et al (2018) Correlations between bone turnover markers, serum magnesium and bone mass density in postmenopausal osteoporosis. Clin Interv Aging 13:1383–1389
33 Okyay E, Ertugrul C, Acar B et al (2013) Comparative evaluation of serum levels of main minerals and postmenopausal osteoporosis. Maturitas 76:320–325. https://doi.org/10.1016/j.maturitas.2013.07.015
34 Hayhoe RPG, Lentjes MAH, Luben RN et al (2015) Dietary magnesium and potassium intakes and circulating magnesium are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the EPIC-Norfolk cohort study. Am J Clin Nutr 102:376–384
35 Kunutsor SK, Whitehouse MR, Blom AW, Laukkanen JA (2017) Low serum magnesium levels are associated with increased risk of fractures: a long-term prospective cohort study. Eur J Epidemiol 32:593–603. https://doi.org/10.1007/s10654-017-0242-
36 Abraham GE, Grewal H (1990) A total dietary program emphasizing magnesium instead of calcium. Effect on the mineral density of calcaneous bone in postmenopausal women on hormonal therapy. J Reprod Med 35:503–507
37 Stendig-Lindberg G, Tepper R, Leichter I (1993) Trabecular bone density in a twoyear controlled trial of peroral magnesium in osteoporosis. Magnes Res 6:155–163
38 Liam Fouhy, Kelsey Mangano, Xiyuan Zhang, Brittany Adelman, Katherine Tucker, Sabrina Noel, Dietary Calcium and Magnesium Are Associated with Lower Odds of Osteoporosis Among Puerto Rican Older Adults When Dietary Calcium to Magnesium Ratio Is Considered, Current Developments in Nutrition, Volume 5, Issue Supplement_2, June 2021, Page 15, https://doi.org/10.1093/cdn/nzab033_015
39 Rondanelli, M., Faliva, M.A., Tartara, A. et al. An update on magnesium and bone health. Biometals 34, 715–736 (2021). https://doi.org/10.1007/s10534-021-00305-0
40 Tsugawa N., Shiraki M. Vitamin K Nutrition and Bone Health. Nutrients. 2020;12:1909. doi: 10.3390/nu12071909
41 Finnes T.E., Lofthus C.M., Meyer H.E., Søgaard A.J., Tell G.S., Apalset E.M., Gjesdal C., Grimnes G., Schei B., Blomhoff R., et al. A combination of low serum concentrations of vitamins PK and D is associated with increased risk of hip fractures in elderly Norwegians: A NOREPOS study. Osteoporos. Int. 2016;27:1645–1652. doi: 10.1007/s00198-015-3435-0
42 Moore A.E., Kim E., Dulnoan D., Dolan A.L., Voong K., Ahmad I., Gorska R., Harrington D.J., Hampson G. Serum vitamin K. Bone. 2020:115630. doi: 10.1016/j.bone.2020.115630
43 Capozzi A, Scambia G, Lello S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas. 2020;140:55-63. doi:10.1016/j.maturitas. 2020.05.020
44 Fusaro M, Cianciolo G, Brandi ML, et al. Vitamin K and Osteoporosis. Nutrients. 2020;12(12):3625. Published 2020 Nov 25. doi:10.3390/nu12123625
45 Tusar K Giri, David Newton, Opal Chaudhary, Elena Deych, Nicola Napoli, Reina Villareal, Kathy Diemer, Paul E Milligan, and Brian F Gage, International Journal for Vitamin and Nutrition Research 2020 90:1-2, 42-48
46 Brzezińska O, Łukasik Z, Makowska J, Walczak K. Role of Vitamin C in Osteoporosis Development and Treatment-A Literature Review. Nutrients. 2020;12(8):2394. Published 2020 Aug 10. doi:10.3390/nu12082394
47 Finck H, Hart AR, Jennings A, Welch AA. Is there a role for vitamin C in preventing osteoporosis and fractures? A review of the potential underlying mechanisms and current epidemiological evidence. Nutr Res Rev. 2014;27(2):268-283. doi:10.1017/
S0954422414000195
48 Malmir H, Shab-Bidar S, Djafarian K. Vitamin C intake in relation to bone mineral density and risk of hip fracture and osteoporosis: a systematic review and meta-analysis of observational studies. Br J Nutr. 2018;119(8):847-858. doi:10.1017/
S0007114518000430
49 Kim MH, Lee HJ. Osteoporosis, vitamin C intake, and physical activity in Korean adults aged 50 years and over. J Phys Ther Sci. 2016;28(3):725-730. doi:10.1589/jpts.28.725
50 Ruiz-Ramos M, Vargas LA, Fortoul Van der Goes TI, Cervantes-Sandoval A, Mendoza-Nunez VM. Supplementation of ascorbic acid and alpha-tocopherol is 355 useful to preventing bone loss linked to oxidative stress in elderly. J Nutr Health Aging. 2010;14(6):467-472. doi:10.1007/s12603-010-0099-5
51 Kołodziejska B, Stępień N, Kolmas J. The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Int J Mol Sci. 2021;22(12):6564. Published 2021 Jun 18. doi:10.3390/ijms22126564
52 Maria S, Swanson MH, Enderby LT, et al. Melatonin-micronutrients Osteopenia Treatment Study (MOTS): a translational study assessing melatonin, strontium (citrate), vitamin D3 and vitamin K2 (MK7) on bone density, bone marker turnover and health related quality of life in postmenopausal osteopenic women following a one-year double-blind RCT and on osteoblast-osteoclast co-cultures. Aging (Albany NY). 2017;9(1):256-285. doi:10.18632/aging.101158
53 Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging. 2007;11(2):99-110
54 Spector TD, Calomme MR, Anderson S, Swaminathan R, Jugdaohsingh R, Vanden-Berge DA, Powell JJ. Effect of bone turnover and BMD of low dose oral silicon as an adjunct to calcium/vitamin D3 in a randomized placebo-controlled trial. Journal of Bone Mineral Research. 2005;20:S172
55 Schiano A, Eisinger F, Detolle P, Laponche AM, Brisou B, Eisinger J. Silicium, tissu osseux et immunité [Silicon, bone tissue and immunity]. Rev Rhum Mal Osteoartic. 1979;46(7-9):483-486
56 Price CT, Koval KJ, Langford JR. Silicon: a review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int J Endocrinol. 2013;2013:316783. doi:10.1155/2013/316783
57 Gaffney-Stomberg, E. The Impact of Trace Minerals on Bone Metabolism. Biol Trace Elem Res 188, 26–34 (2019). https://doi.org/10.1007/s12011-018-1583-8
58 Khaliq, H., Juming, Z. & Ke-Mei, P. The Physiological Role of Boron on Health. Biol Trace Elem Res 186, 31–51 (2018). https://doi.org/10.1007/s12011-018-1284-3
59 Rondanelli M, Faliva MA, Peroni G, et al. Pivotal role of boron supplementation on bone health: A narrative review. J Trace Elem Med Biol. 2020;62:126577. doi:10.1016/j.jtemb.2020.126577
60 Sharma T, Mandal CC. Omega-3 fatty acids in pathological calcification and bone health. J Food Biochem. 2020;44(8):e13333. doi:10.1111/jfbc.13333
61 Kim BJ, Yoo HJ, Park SJ, et al. Association of blood n-3 fatty acid with bone mass and bone marrow TRAP-5b in the elderly with and without hip fracture. Osteoporos Int. 2019;30(5):1071-1078. doi:10.1007/s00198-019-04881-3
62 Kajarabille N, Díaz-Castro J, Hijano S, López-Frías M, López-Aliaga I, Ochoa JJ. A new insight to bone turnover: role of ω-3 polyunsaturated fatty acids. ScientificWorldJournal. 2013;2013:589641. Published 2013 Nov 4. doi:10.1155/2013/589641
63 Abdelhamid A, Hooper L, Sivakaran R, Hayhoe RPG, Welch A; PUFAH Group. The Relationship Between Omega-3, Omega-6 and Total Polyunsaturated Fat and Musculoskeletal Health and Functional Status in Adults: A Systematic Review and Meta-analysis of RCTs. Calcif Tissue Int. 2019;105(4):353-372. doi:10.1007/s00223-019-00584-3
64 Rondanelli M, Tartara A, Fossari F, et al. Adequate intake and supplementation of B vitamins, in particular folic acid, can play a protective role in bone health [published online ahead of print, 2021 Oct 4]. Curr Aging Sci. 2021;10.2174/1874609814666211005101730. doi:10.2174/1874609814666211005101730
65 Yazdanpanah N, Zillikens MC, Rivadeneira F, et al. Effect of dietary B vitamins on BMD and risk of fracture in elderly men and women: the Rotterdam study. Bone. 2007;41(6):987-994. doi:10.1016/j.bone.2007.08.021
66 Puel C, Coxam V, Davicco MJ. Régime méditerranéen et ostéoporose [Mediterranean diet and osteoporosis prevention]. Med Sci (Paris). 2007;23(8-9):756-760. doi:10.1051/medsci/20072389756
67 Romero Pérez A, Rivas Velasco A. Adherence to Mediterranean diet and bone health. Nutr Hosp. 2014;29(5):989-996. Published 2014 May 1. doi:10.3305/nh.2014.29.5.7332
68 Puel C, Coxam V, Davicco MJ. Régime méditerranéen et ostéoporose [Mediterranean diet and osteoporosis prevention]. Med Sci (Paris). 2007;23(8-9):756-760. doi:10.1051/medsci/20072389756
69 Fernández-Real JM, Bulló M, Moreno-Navarrete JM, et al. A Mediterranean diet enriched with olive oil is associated with higher serum total osteocalcin levels in elderly men at high cardiovascular risk. J Clin Endocrinol Metab. 2012;97(10):3792-3798. doi:10.1210/jc.2012-2221
70 Atmaca A, Kleerekoper M, Bayraktar M, Kucuk O. Soy isoflavones in the management of postmenopausal osteoporosis. Menopause. 2008;15(4 Pt 1):748-757. doi:10.1097/gme.0b013e31815c1e7f
71 Chen YM, Ho SC, Lam SS, Ho SS, Woo JL. Soy isoflavones have a favorable effect on bone loss in Chinese postmenopausal women with lower bone mass: a double-blind, randomized, controlled trial. J Clin Endocrinol Metab. 2003;88(10):4740-4747.
doi:10.1210/jc.2003-030290
72 Zhang Y, Chen WF, Lai WP, Wong MS. Soy isoflavones and their bone protective effects. Inflammopharmacology. 2008;16(5):213-215. doi:10.1007/s10787-008-8018-7
73 Zhang Y, Chen WF, Lai WP, Wong MS. Soy isoflavones and their bone protective effects. Inflammopharmacology. 2008;16(5):213-215. doi:10.1007/s10787-008-8018-7
74 Anupama DS, Norohna JA, Acharya KK, Ravishankar, George A. Effect of exercise on bone mineral density and quality of life among postmenopausal women with osteoporosis without fracture: A systematic review. Int J Orthop Trauma Nurs. 2020;39:100796. doi:10.1016/j.ijotn.2020.100796
75 Bonaiuti D, Shea B, Iovine R, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2002;(3):CD000333. doi:10.1002/14651858.CD000333
76 Howe TE, Shea B, Dawson LJ, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011;(7):CD000333. Published 2011 Jul 6. doi:10.1002/14651858.CD000333.pub2
77 Moreira LD, Oliveira ML, Lirani-Galvão AP, Marin-Mio RV, Santos RN, Lazaretti-Castro M. Physical exercise and osteoporosis: effects of different types of exercises on bone and physical function of postmenopausal women. Arq Bras Endocrinol Metabol. 2014;58(5):514-522. doi:10.1590/0004-2730000003374
78 Jolly JJ, Chin KY, Alias E, Chua KH, Soelaiman IN. Protective Effects of Selected Botanical Agents on Bone. Int J Environ Res Public Health. 2018;15(5):963. Published 2018 May 11. doi:10.3390/ijerph15050963
79 Zhang G, Qin L, Shi Y. Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial. J Bone Miner Res. 2007;22(7):1072-1079. doi:10.1359/jbmr.070405
80 Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res. 2018;32(12):2323-2339. doi:10.1002/ptr.6178
81 Rho TW, Lee SY, Han SY, et al. Glycyrrhizae Radix Inhibits Osteoclast Differentiation by Inhibiting c-Fos-Dependent NFATc1 Expression. Am J Chin Med. 2017;45(2):283-298. doi:10.1142/S0192415X17500185
82 Lin Y, Murray MA, Garrett IR, et al. A targeted approach for evaluating preclinical activity of botanical extracts for support of bone health. J Nutr Sci. 2014;3:e13. Published 2014 May 13. doi:10.1017/jns.2014.5
83 Galanis D, Soultanis K, Lelovas P, et al. Protective effect of Glycyrrhiza glabra roots extract on bone mineral density of ovariectomized rats. Biomedicine (Taipei). 2019;9(2):8. doi:10.1051/bmdcn/2019090208
84 Joyce KM, Wong CP, Scriven IA, et al. Isoliquiritigenin Decreases Bone Resorption and Osteoclast Differentiation. Mol Nutr Food Res. 2022;66(11):e2100974. doi:10.1002/mnfr.202100974
85 Somjen, D., Katzburg, S., Vaya, J., Kaye, A. M., Hendel, D., Posner, G. H. & Tamir, S. (2004). Estrogenic activity of glabridin and glabrene from licorice roots on human osteoblasts and prepubertal rat skeletal tissues. Journal of Steroid Biochemistry and Molecular Biology, 91(4–5), 241–246
86 Nieves, J.W. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos Int 24, 771–786 (2013). https://doi.org/10.1007/s00198-012-2214-4
87 Lambert MNT, Thybo CB, Lykkeboe S, et al. Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial. Am J Clin Nutr. 2017;106(3):909-920. doi:10.3945/ajcn.117.153353
88 Chen, Y. M., Wang, I. L., Zhu, X. Y., Chiu, W. C., & Chiu, Y. S. (2021). Red Clover Isoflavones Influence Estradiol Concentration, Exercise Performance, and Gut Microbiota in Female Mice. Frontiers in nutrition, 8, 623698. https://doi.org/10.3389/fnut.2021.623698
89 Adhikari, B. M., Bajracharya, A., & Shrestha, A. K. (2015). Comparison of nutritional properties of Stinging nettle (Urtica dioica) flour with wheat and barley flours. Food science & nutrition, 4(1), 119–124. https://doi.org/10.1002/fsn3.259


Ch. 37: Pain Management Protocol

1 Centers for Disease Control and Prevention. (2019, September 16). Prevalence of chronic pain and high-impact chronic pain among adults - United States, 2016. Centers for Disease Control and Prevention. Retrieved August 31, 2022, from https://www.cdc.gov/mmwr/volumes/67/wr/mm6736a2.htm#suggestedcitation
2 Wu, A., March, L., Zheng, X., Huang, J., Wang, X., Zhao, J., Blyth, F. M., Smith, E., Buchbinder, R., & Hoy, D. (2020). Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the global burden of disease study 2017. Annals of Translational Medicine, 8(6), 299–299. https://doi.org/10.21037/atm.2020.02.175
3 Raffaeli, W., & Arnaudo, E. (2017). Pain as a disease: An overview. Journal of Pain Research, Volume 10, 2003–2008. https://doi.org/10.2147/jpr.s138864
4 Sheng, J., Liu, S., Wang, Y., Cui, R., & Zhang, X. (2017). The link between depression and chronic pain: Neural mechanisms in the brain. Neural Plasticity, 2017, 1–10. https://doi.org/10.1155/2017/9724371
5 Centers for Disease Control and Prevention. (2022, June 2). Death Rate Maps & Graphs. Centers for Disease Control and Prevention. Retrieved August 31, 2022, from https://www.cdc.gov/drugoverdose/deaths/index.html
6 MediLexicon International. (n.d.). What is pain, and how do you treat it? Medical News Today. Retrieved August 30, 2022, from https://www.medicalnewstoday.com/articles/145750
7 Dubin, A. E., & Patapoutian, A. (2010). Nociceptors: The sensors of the pain pathway. Journal of Clinical Investigation, 120(11), 3760–3772. https://doi.org/10.1172/jci42843
8 4 trends in opioid use, harms, and treatment - national center for ... (n.d.). Retrieved August 31, 2022, from https://www.ncbi.nlm.nih.gov/books/NBK458661/
9 Yu, G., Xiang, W., Zhang, T., Zeng, L., Yang, K., & Li, J. (2020). Effectiveness of boswellia and Boswellia extract for osteoarthritis patients: A systematic review and meta-analysis. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-020-02985-6
10 Siddiqui M. Z. (2011). Boswellia serrata, a potential antiinflammatory agent: an overview. Indian journal of pharmaceutical sciences, 73(3), 255–261. https://doi.org/10.4103/0250-474X.93507
11 Prabhavathi, K., Chandra, U. S. J., Soanker, R., & Rani, P. U. (2014). A randomized, double blind, placebo controlled, cross over study to evaluate the analgesic activity of Boswellia serrata in healthy volunteers using mechanical pain model. Indian Journal of 356 Pharmacology, 46(5), 475. https://doi.org/10.4103/0253-7613.140570
12 Noguchi, K., & Okubo, M. (2011). Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain. Biological & Pharmaceutical Bulletin, 34(8), 1163–1169. https://doi.org/10.1248/bpb.34.1163
13 Moncivaiz, A. (2018, October 6). Boswellia: Uses, dosage, side effects, and more. Healthline. Retrieved August 29, 2022, from https://www.healthline.com/health/boswellia#side-effects
14 Porter, B., Marie, B. S., Milavetz, G., & Herr, K. (2021). Cannabidiol (CBD) use by older adults for acute and chronic pain. Journal of Gerontological Nursing, 47(7), 6–15. https://doi.org/10.3928/00989134-20210610-02
15 Caruso, C. (2022, July 15). Building a better painkiller. Building a Better Painkiller| Harvard Medical School. Retrieved August 29, 2022, from https://hms.harvard.edu/news/building-better-painkiller
16 Wade, D. T., Robson, P., House, H., Makela, P., & Aram, J. (2003). A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clinical Rehabilitation, 17(1), 21–29. https://doi.org/10.1191/0269215503cr581oa
17 Russo, E. (2008). Cannabinoids in the management of difficult to treat pain. Therapeutics and Clinical Risk Management, Volume 4, 245–259. https://doi.org/10.2147/tcrm.s1928
18 Shafik Boyaji, M. D. (2020, September 23). CBD for chronic pain: The science doesn’t match the marketing. Harvard Health. Retrieved August 29, 2022, from shorturl.at/ADOP3.
19 Iffland, K., & Grotenhermen, F. (2017). An update on safety and side effects of Cannabidiol: A review of Clinical Data and relevant animal studies. Cannabis and Cannabinoid Research, 2(1), 139–154. https://doi.org/10.1089/can.2016.0034
20 Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., & Xu, R. (2021). Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Design, Development and Therapy, Vol.15, 4503–4525. https://doi.org/10.2147/dddt.s327378
21 Pari, L., Tewas, D., & Eckel, J. (2008). Role of curcumin in health and disease. Archives of Physiology and Biochemistry, 114(2), 127–149. https://doi.org/10.1080/13813450802033958
22 Wang, Z., Singh, A., Jones, G., Winzenberg, T., Ding, C., Chopra, A., Das, S., Danda, D., Laslett, L., & Antony, B. (2021). Efficacy and safety of turmeric extracts for the treatment of knee osteoarthritis: A systematic review and meta-analysis of Randomised Controlled Trials. Current Rheumatology Reports, 23(2). https://doi.org/10.1007/s11926-020-00975-8
23 Sun, J., Chen, F., Braun, C., Zhou, Y.-Q., Rittner, H., Tian, Y.-K., Cai, X.-Y., & Ye, D.-W. (2018). Role of curcumin in the management of pathological pain. Phytomedicine, 48, 129–140. https://doi.org/10.1016/j.phymed.2018.04.045
24 Zhu, X., Li, Q., Chang, R., Yang, D., Song, Z., Guo, Q., & Huang, C. (2014). Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0091303
25 Hasriadi, Dasuni Wasana, P. W., Vajragupta, O., Rojsitthisak, P., & Towiwat, P. (2021). Mechanistic insight into the effects of curcumin on neuroinflammation-driven chronic pain. Pharmaceuticals, 14(8), 777. https://doi.org/10.3390/ph14080777
26 Hartung, J. E., Eskew, O., Wong, T., Tchivileva, I. E., Oladosu, F. A., O’Buckley, S. C., & Nackley, A. G. (2015). Nuclear factor-kappa B regulates pain and COMT expression in a rodent model of inflammation. Brain, Behavior, and Immunity, 50, 196–202. https://doi.org/10.1016/j.bbi.2015.07.014
27 Pareek, A., Suthar, M., Rathore, G. S., & Bansal, V. (2011). Feverfew (tanacetum parthenium L.): A systematic review. Pharmacognosy Reviews, 5(9), 103. https://doi.org/10.4103/0973-7847.79105
28 Mannelli, L. D.-C., Tenci, B., Zanardelli, M., Maidecchi, A., Lugli, A., Mattoli, L., & Ghelardini, C. (2015). Widespread pain reliever profile of a flower extract of Tanacetum parthenium. Phytomedicine, 22(7-8), 752–758. https://doi.org/10.1016/j.phymed.2015.05.006
29 Feverfew. Mount Sinai Health System. (n.d.). Retrieved August 29, 2022, from https://www.mountsinai.org/health-library/herb/feverfew
30 Bhardwaj, Neha et al. “Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum.” Recent patents on inflammation & allergy drug discovery vol. 8,2 (2014): 104-17
31 Zhi-Bin Lin. “Cellular and Molecular Mechanisms of Immuno-modulation by Ganoderma lucidum [italic].” J Pharmacol Sci 99, 144-153. 2005
32 Eugene R. Zampieron, ND*; Ellen J. Kamhi, PhD, RNb, Natural Support for Autoimmune and Inflammatory Disease, Journal of Restorative Medicine, 2012 Volume 1, Issue 1, pages 38-47, DOI: https://doi.org/10.14200/jrm.2012.1.1003
33 Cai, Zhe et al. “Anti-inflammatory activities of Ganoderma lucidum (Lingzhi) and San-Miao-San supplements in MRL/lpr mice for the treatment of systemic lupus erythematosus.” Chinese Medicine vol. 11 23. 29 Apr. 2016. 8. Zhi-Bin Lin. “Cellular and Molecular Mechanisms of Immuno-modulation by Ganoderma lucidum.” J Pharmacol Sci 99, 144-153. 2005
34 Li, E. K., Tam, L. S., Wong, C. K., Li, W. C., Lam, C. W., Wachtel-Galor, S., Benzie, I. F., Bao, Y. X., Leung, P. C., & Tomlinson, B. (2007). Safety and efficacy of Ganoderma lucidum (lingzhi) and San Miao San supplementation in patients with rheumatoid arthritis: a double-blind, randomized, placebo-controlled pilot trial. Arthritis and rheumatism, 57(7), 1143–1150. https://doi.org/10.1002/art.22994
35 Sajjad Ahmadi-Renani, Mahdi Fasihi-Ramandi, Kazem Ahmadi. “Ganoderma lucidum: A promising anti-inflammatory medicinal plant.”, J HerbMed Pharmacol. 2014; 3(1):67-68
36 H;, P. B. N. (n.d.). St. John’s wort. National Center for Biotechnology Information. Retrieved June 17, 2022, from https://pubmed.ncbi.nlm.nih.gov/32491397/
37 Butterweck, V. (2003). Mechanism of action of St John???s wort in depression. CNS Drugs, 17(8), 539–562. https://doi.org/10.2165/00023210-200317080-00001
38 Galeotti, N., Vivoli, E., Bilia, A. R., Vincieri, F. F., & Ghelardini, C. (2010). St. John’s wort reduces neuropathic pain through a hypericin-mediated inhibition of the protein kinase C γ and ɛ activity. Biochemical Pharmacology, 79(9), 1327–1336. https://doi.org/10.1016/j.bcp.2009.12.016
39 Finnerup, N. B., Kuner, R., & Jensen, T. S. (2021). Neuropathic pain: From mechanisms to treatment. Physiological Reviews, 101(1), 259–301. https://doi.org/10.1152/physrev.00045.2019
40 Sanna, M. D., Ghelardini, C., & Galeotti, N. (2016). St. john’s wort potentiates anti-nociceptive effects of morphine in mice models of neuropathic pain. Pain Medicine. https://doi.org/10.1093/pm/pnw241s
41 Nicolussi, S., Drewe, J., Butterweck, V., & Meyer zu Schwabedissen, H. E. (2020). Clinical relevance of St. John’s wort drug interactions revisited. British Journal of Pharmacology, 177(6), 1212–1226. https://doi.org/10.1111/bph.14936
42 Markowitz, J. S. (2003). Effect of st john’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA, 290(11), 1500. https://doi.org/10.1001/jama.290.11.1500
43 Dannawi, M. (2002). Possible serotonin syndrome after combination of buspirone and St John’s wort. Journal of Psychopharmacology, 16(4), 401–401. https://doi.org/10.1177/026988110201600420
44 Lévesque H, Lafont O. L’aspirine à travers les siècles: rappel historique [Aspirin throughout the ages: a historical review]. Rev Med Interne. 2000 Mar;21 Suppl 1:8s-17s. French. doi: 10.1016/s0248-8663(00)88720-2. PMID: 10763200
45 Sneader, W. (2000). The discovery of aspirin: A reappraisal. BMJ, 321(7276), 1591–1594. https://doi.org/10.1136/bmj.321.7276.1591
46 Wood, J. N. (2015). From Plant Extract to Molecular Panacea: A commentary on stone (1763) ‘an account of the success of the bark of the willow in the cure of the agues.’ Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1666), 20140317. https://doi.org/10.1098/rstb.2014.0317
47 Vlachojannis, J., Magora, F., & Chrubasik, S. (2011). Willow species and aspirin: Different mechanism of actions. Phytotherapy Research, 25(7), 1102–1104. https://doi.org/10.1002/ptr.3386
48 Chrubasik, S., Eisenberg, E., Balan, E., Weinberger, T., Luzzati, R., & Conradt, C. (2000). Treatment of low back pain exacerbations with willow bark extract: A randomized double-blind study. The American Journal of Medicine, 109(1), 9–14. https://doi.org/10.1016/s0002-9343(00)00442-3
49 Chrubasik, S., Weiser, T., & Beime, B. (2010). Effectiveness and safety of topical capsaicin cream in the treatment of Chronic Soft Tissue pain. Phytotherapy Research, 24(12), 1877–1885. https://doi.org/10.1002/ptr.3335
50 Derry, S., Lloyd, R., Moore, R. A., & McQuay, H. J. (2009). Topical capsaicin for chronic neuropathic pain in adults. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd007393.pub2
51 Silva, G. L., Luft, C., Lunardelli, A., Amaral, R. H., Melo, D. A., Donadio, M. V., Nunes, F. B., de Azambuja, M. S., Santana, J. C., Moraes, C. M., Mello, R. O., Cassel, E., Pereira, M. A., & de Oliveira, J. R. (2015). Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. Anais da Academia Brasileira de Ciencias, 87(2 Suppl), 1397–1408. https://doi.org/10.1590/0001-3765201520150056
52 Sasannejad, P., Saeedi, M., Shoeibi, A., Gorji, A., Abbasi, M., & Foroughipour, M. (2012). Lavender essential oil in the treatment of migraine headache: A placebo-controlled clinical trial. European Neurology, 67(5), 288–291. https://doi.org/10.1159/000335249
53 Göbel, H., Heinze, A., Heinze-Kuhn, K., Göbel, A., & Göbel, C. (2016). Oleum menthae piperitae (pfefferminzöl) in der Akuttherapie des Kopfschmerzes vom Spannungstyp. Der Schmerz, 30(3), 295–310. https://doi.org/10.1007/s00482-016-0109-6
54 Davies, S. J., Harding, L. M., & Baranowski, A. P. (2002). A novel treatment of postherpetic neuralgia using peppermint oil. The Clinical Journal of Pain, 18(3), 200–202. https://doi.org/10.1097/00002508-200205000-00011
55 Göbel, H., Schmidt, G., & Soyka, D. (1994). Effect of peppermint and eucalyptus oil preparations on neurophysiological and experimental algesimetric headache parameters. Cephalalgia, 14(3), 228–234. https://doi.org/10.1046/j.14682982.1994.014003228.x
56 Zhou, W. B., Meng, J. W., & Zhang, J. (2021). Does low grade systemic inflammation have a role in chronic pain? Frontiers in Molecular Neuroscience, 14. https://doi.org/10.3389/fnmol.2021.785214
57 Ricker, M. A., & Haas, W. C. (2017). Anti-inflammatory diet in clinical practice: A Review. Nutrition in Clinical Practice, 32(3), 318–325. https://doi.org/10.1177/0884533617700353
58 Brain, K., Burrows, T. L., Bruggink, L., Malfliet, A., Hayes, C., Hodson, F. J., & Collins, C. E. (2021). Diet and chronic non-cancer pain: The state of the art and Future Directions. Journal of Clinical Medicine, 10(21), 5203. https://doi.org/10.3390/jcm10215203
59 Guo, R., Chen, L.-H., Xing, C., & Liu, T. (2019). Pain regulation by gut microbiota: Molecular mechanisms and therapeutic potential. British Journal of Anaesthesia, 123(5), 637–654. https://doi.org/10.1016/j.bja.2019.07.026
60 Mayer, E. A. (2011). Gut feelings: The emerging biology of Gut–Brain Communication. Nature Reviews Neuroscience, 12(8), 453–466. https://doi.org/10.1038/nrn3071
61 Dworsky-Fried, Z., Kerr, B. J., & Taylor, A. M. W. (2020). Microbes, microglia, and pain. Neurobiology of Pain, 7, 100045. https://doi.org/10.1016/j.ynpai.2020.100045
62 Arfailasufandi, R., & Andiarna, F. (2018). The influence of dark chocolate to reduce menstrual pain in primary dysmenorhea. Journal of Health Science and 357 Prevention, 2(1), 27–35. https://doi.org/10.29080/jhsp.v2i1.107
63 De Feo, M., Paladini, A., Ferri, C., Carducci, A., Del Pinto, R., Varrassi, G., & Grassi, D. (2020). Anti-inflammatory and anti-nociceptive effects of cocoa: A review on future perspectives in treatment of pain. Pain and Therapy, 9(1), 231–240. https://doi.org/10.1007/s40122-020-00165-5
64 De Feo, M., Paladini, A., Ferri, C., Carducci, A., Del Pinto, R., Varrassi, G., & Grassi, D. (2020). Anti-inflammatory and anti-nociceptive effects of cocoa: A review on future perspectives in treatment of pain. Pain and Therapy, 9(1), 231–240. https://doi.org/10.1007/s40122-020-00165-5
65 Terry, R., Posadzki, P., Watson, L. K., & Ernst, E. (2011). The use of ginger (zingiber officinale) for the treatment of pain: A systematic review of Clinical Trials. Pain Medicine, 12(12), 1808–1818. https://doi.org/10.1111/j.1526-4637.2011.01261.x
66 Acupuncture: What is it, how it works, treatments. Cleveland Clinic. (n.d.). Retrieved September 1, 2022, from https://t.ly/50jC.
67 Patil, S., Sen, S., Bral, M., Reddy, S., Bradley, K. K., Cornett, E. M., Fox, C. J., & Kaye, A. D. (2016). The role of acupuncture in pain management. Current Pain and Headache Reports, 20(4). https://doi.org/10.1007/s11916-016-0552-1
68 Mayo Foundation for Medical Education and Research. (2022, April 30). Acupuncture. Mayo Clinic. Retrieved September 1, 2022, from https://www.mayoclinic.org/tests-procedures/acupuncture/about/pac-20392763#s
69 Goto, Y., Hayasaka, S., Kurihara, S., & Nakamura, Y. (2018). Physical and mental effects of bathing: A randomized intervention study. Evidence-Based Complementary and Alternative Medicine, 2018, 1–5. https://doi.org/10.1155/2018/9521086
70 Petersen, B. W., Arbuckle, H. A., & Berman, S. (2015). Effectiveness of saltwater baths in the treatment of epidermolysis bullosa. Pediatric Dermatology, 32(1), 60–63. https://doi.org/10.1111/pde.12409
71 Bai, R., Li, C., Xiao, Y., Sharma, M., Zhang, F., & Zhao, Y. (2019). Effectiveness of spa therapy for patients with chronic low back pain. Medicine, 98(37). https://doi.org/10.1097/md.0000000000017092
72 Gröber, U., Werner, T., Vormann, J., & Kisters, K. (2017). Myth or reality—transdermal magnesium? Nutrients, 9(8), 813. https://doi.org/10.3390/nu9080813s
73 Rath, L. (n.d.). Epsom salts bath: How to take one, what it does. WebMD. Retrieved June 21, 2022, from https://www.webmd.com/a-to-z-guides/epsom-salt-bath#s
74 Muanjai, P., Mickevicius, M., Kamandulis, S., Snieckus, A., & Jones, D. A. (2019). The relationship between stiffness and pain following unaccustomed eccentric exercise: The effects of gentle stretch and repeated bout. European Journal of Applied Physiology, 119(5), 1183–1194. https://doi.org/10.1007/s00421-019-04108-7s
75 Law, L. F., & Sluka, K. A. (2016). How does physical activity modulate pain? Pain, 158(3), 369–370. https://doi.org/10.1097/j.pain.0000000000000792
76 Lee, M. S., Pittler, M. H., & Ernst, E. (2007). External qigong for pain conditions: A systematic review of randomized clinical trials. The Journal of Pain, 8(11), 827–831. https://doi.org/10.1016/j.jpain.2007.05.016
77 Zeidan, F., & Vago, D. R. (2016). Mindfulness meditation-based pain relief: A mechanistic account. Annals of the New York Academy of Sciences, 1373(1), 114–127. https://doi.org/10.1111/nyas.13153
78 Brandel, M. G., Lin, C., Hennel, D., Khazen, O., Pilitsis, J. G., & Ben-Haim, S. (2022). Mindfulness meditation in the treatment of chronic pain. Neurosurgery Clinics of North America, 33(3), 275–279. https://doi.org/10.1016/j.nec.2022.02.005
79 Mindfulness meditation to Control Pain. Harvard Health. (2019, June 15). Retrieved August 31, 2022, from https://www.health.harvard.edu/pain/mindfulness-meditation-to-control-pain
80 Nunez, K. (2020, July 20). Why do we sleep? Healthline. Retrieved August 20, 2022, from https://www.healthline.com/health/why-do-we-sleep#
81 Van Cauter, E., & Plat, L. (1996). Physiology of growth hormone secretion during sleep. The Journal of Pediatrics, 128(5). https://doi.org/10.1016/s0022-3476(96)70008-2
82 Boggero, I. A., Krietsch, K. N., Pickerill, H. M., Byars, K. C., Homan, K. J., Williams, S. E., & King, C. D. (2021). Improvements in sleep correlate with improvements in clinical outcomes among adolescents undergoing intensive interdisciplinary pain treatment. The Clinical Journal of Pain, 37(6), 443–453. https://doi.org/10.1097/ajp.0000000000000936
83 Staffe, A. T., Bech, M. W., Clemmensen, S. L., Nielsen, H. T., Larsen, D. B., & Petersen, K. K. (2019). Total sleep deprivation increases pain sensitivity, impairs conditioned pain modulation and facilitates temporal summation of pain in healthy participants. PLOS ONE, 14(12). https://doi.org/10.1371/journal.pone.0225849
84 Whale, K., & Gooberman‐Hill, R. (2022). The importance of sleep for people with chronic pain: Current insights and evidence. JBMR Plus, 6(7). https://doi.org/10.1002/jbm4.10658
85 Habib, A. M., Nagi, K., Thillaiappan, N. B., Sukumaran, V. K., & Akhtar, S. (2020). Vitamin D and its potential interplay with pain signaling pathways. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.00820
86 Shipton, E. E., & Shipton, E. A. (2015). Vitamin D deficiency and pain: Clinical evidence of low levels of vitamin D and supplementation in chronic pain states. Pain and Therapy, 4(1), 67–87. https://doi.org/10.1007/s40122-015-0036-8
87 Mayo Clinic. (2009, March 27). Inadequate Vitamin D Levels Linked to High Use of Narcotic Medication by Patients in Chronic Pain. ScienceDaily. Retrieved August 30, 2022 from www.sciencedaily.com/releases/2009/03/090320112114.htm
88 Habib, A. M., Nagi, K., Thillaiappan, N. B., Sukumaran, V. K., & Akhtar, S. (2020). Vitamin D and its potential interplay with pain signaling pathways. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.00820
89 Wartenberg, L. (2022, March 10). Vitamin D deficiency: Symptoms, treatments, and causes. Healthline. Retrieved August 22, 2022, from https://www.healthline.com/nutrition/vitamin-d-deficiency-symptoms
90 Bjarnadottir, A. (2021, February 18). How much vitamin D should you take for optimal health? Healthline. Retrieved June 22, 2022, from https://www.healthline.com/nutrition/how-much-vitamin-d-to-take
91 Zhang, M., Han, W., Hu, S., & Xu, H. (2013). Methylcobalamin: A potential vitamin of Pain Killer. Neural Plasticity, 2013, 1–6. https://doi.org/10.1155/2013/424651 92 Leishear, K., Boudreau, R. M., Studenski, S. A., Ferrucci, L., Rosano, C., Rekeneire, N.,Houston, D. K., Kritchevsky, S. B., Schwartz, A. V., Vinik, A. I., Hogervorst, E., Yaffe, K., Harris, T. B., Newman, A. B., & Strotmeyer, E. S. (2012). Relationship between vitamin B12 and sensory and motor peripheral nerve function in older adults. Journal of the American Geriatrics Society, 60(6), 1057–1063. https://doi.org/10.1111/j.1532-5415.2012.03998.x
93 Maroon, J. C., & Bost, J. W. (2006). Ω-3 fatty acids (fish oil) as an anti-inflammatory: An alternative to nonsteroidal anti-inflammatory drugs for discogenic pain. Surgical Neurology, 65(4), 326–331. https://doi.org/10.1016/j.surneu.2005.10.023
94 Rajaei, E., Mowla, K., Ghorbani, A., Bahadoram, S., Bahadoram, M., & Dargahi-Malamir, M. (2015). The effect of omega-3 fatty acids in patients with active rheumatoid arthritis receiving dmards therapy: Double-blind randomized controlled trial. Global Journal of Health Science, 8(7), 18. https://doi.org/10.5539/gjhs.v8n7p18
95 Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition, 3(1), 1–7. https://doi.org/10.3945/an.111.000893
96 Schwalfenberg, G. K., & Genuis, S. J. (2017). The importance of magnesium in clinical healthcare. Scientifica, 2017, 1–14. https://doi.org/10.1155/2017/4179326
97 Tarleton, E. K., Kennedy, A. G., Rose, G. L., & Littenberg, B. (2020). Relationship between magnesium intake and chronic pain in U.S. adults. Nutrients, 12(7), 2104. https://doi.org/10.3390/nu12072104
98 Kreutzwiser, D., & Tawfic, Q. A. (2019). Expanding role of NMDA receptor antagonists in the management of pain. CNS Drugs, 33(4), 347–374. https://doi.org/10.1007/s40263-019-00618-2
99 Park, R., Ho, A. M.-H., Pickering, G., Arendt-Nielsen, L., Mohiuddin, M., & Gilron, I. (2020). Efficacy and safety of magnesium for the management of chronic pain in adults: A systematic review. Anesthesia & Analgesia, 131(3), 764–775. https://doi.org/10.1213/ane.0000000000004673
100 Pickering, G., Mazur, A., Trousselard, M., Bienkowski, P., Yaltsewa, N., Amessou, M., Noah, L., & Pouteau, E. (2020). Magnesium status and stress: The Vicious Circle Concept revisited. Nutrients, 12(12), 3672. https://doi.org/10.3390/nu12123672
101 Roman, P., Abalo, R., Marco, E. M., & Cardona, D. (2018). Probiotics in digestive, emotional, and pain-related disorders. Behavioural Pharmacology, 29(2 and 3), 103–119. https://doi.org/10.1097/fbp.0000000000000385 102 Cannarella, L. A., Mari, N. L., Alcântara, C. C., Iryioda, T. M., Costa, N. T., Oliveira, S. R., Lozovoy, M. A., Reiche, E. M., Dichi, I., & Simão, A. N. (2021). Mixture of probiotics reduces inflammatory biomarkers and improves the oxidative/nitrosative profile in people with rheumatoid arthritis. Nutrition, 89, 111282. https://doi.org/10.1016/j.nut.2021.111282
103 Carr, A. C., & McCall, C. (2017). The role of Vitamin C in the treatment of Pain: New insights. Journal of Translational Medicine, 15(1). https://doi.org/10.1186/s12967-017-1179-7
104 Zelfand E. Vitamin C, Pain and Opioid Use Disorder. Integr Med (Encinitas). 2020 Jun;19(3):18-29. PMID: 33132774; PMCID: PMC7572147.
105 Evangelou A, Kalfakakou V, Georgakas P, Koutras V, Vezyraki P, Iliopoulou L, Vadalouka A. Ascorbic acid (vitamin C) effects on withdrawal syndrome of heroin abusers. In Vivo. 2000 Mar-Apr;14(2):363-6. PMID: 10836211.
106 Ballaz, S. J., & Rebec, G. V. (2019). Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacological Research, 146, 104321. https://doi.org/10.1016/j.phrs.2019.104321
107 Queremel Milani DA, Davis DD. Pain Management Medications. [Updated 2022 Jul 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560692/
108 Lee, W. M. (2004). Acetaminophen and the U.S. acute liver failure study group: Lowering the risks of hepatic failure. Hepatology, 40(1), 6–9. https://doi.org/10.1002/hep.20293
109 McEvoy, L., Carr, D. F., & Pirmohamed, M. (2021). Pharmacogenomics of NSAID-induced upper gastrointestinal toxicity. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.684162
110 Ramic, E., Prasko, S., Gavran, L., & Spahic, E. (2020). Assessment of the antidepressant side effects occurrence in patients treated in primary care. Materia Socio Medica, 32(2), 131. https://doi.org/10.5455/msm.2020.32.131-134
111 Walia, K. S., Khan, E. A., Ko, D. H., Raza, S. S., & Khan, Y. N. (2004). Side effects of antiepileptics- A Review. Pain Practice, 4(3), 194–203. https://doi.org/10.1111/j.1533-2500.2004.04304.x
112 Wiegel, M., Gottschaldt, U., Hennebach, R., Hirschberg, T., & Reske, A. (2007). Complications and adverse effects associated with continuous peripheral nerve blocks in orthopedic patients. Anesthesia & Analgesia, 104(6), 1578–1582. https://doi.org/10.1213/01.ane.0000261260.69083.f3
113 Benyamin, R., Trescot, A. M., Datta, S., Buenaventura, R., Adlaka, R., Sehgal, N., Glaser, S. E., & Vallejo, R. (2008). Opioid complications and side effects. Pain physician, 11(2 Suppl), S105–S120.358 114 U.S. Department of Health and Human Services. (2022, July 21). Overdose death rates. National Institutes of Health. Retrieved August 31, 2022, from https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates#
115 Seaman, D. R. (2002). The diet-induced proinflammatory state: Journal of Manipulative and Physiological Therapeutics, 25(3), 168–179. https://doi.org/10.1067/mmt.2002.122324
116 Shin, D., Hong, S. J., Lee, K. W., Shivappa, N., Hebert, J. R., & Kim, K. (2022). Pro-inflammatory diet associated with low back pain in adults aged 50 and older. Applied Nursing Research, 66, 151589. https://doi.org/10.1016/j.apnr.2022.151589
117 Kiecolt-Glaser, J. K. (2010). Stress, food, and inflammation: Psychoneuroimmunology and nutrition at The Cutting Edge. Psychosomatic Medicine, 72(4), 365–369. https://doi.org/10.1097/psy.0b013e3181dbf489
118 NHS. (n.d.). NHS choices. Retrieved August 3, 2022, from https://www.nhs.uk/livewell/eat-well/how-to-eat-a-balanced-diet/what-are-processed-foods/
119 Geiselman, J. F. (2019). The clinical use of IGG food sensitivity testing with migraine headache patients: A literature review. Current Pain and Headache Reports, 23(11). https://doi.org/10.1007/s11916-019-0819-4
120 Ohtsuka, Y. (2015). Food intolerance and mucosal inflammation. Pediatrics International, 57(1), 22–29. https://doi.org/10.1111/ped.12546
121 Lunde, C. E., & Sieberg, C. B. (2020). Walking the tightrope: A proposed model of chronic pain and stress. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00270
122 Baum, A. (1990). Stress, intrusive imagery, and chronic distress. Health Psychology, 9(6), 653–675. https://doi.org/10.1037/0278-6133.9.6.653
123 Hannibal, K. E., & Bishop, M. D. (2014). Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Physical Therapy, 94(12), 1816–1825. https://doi.org/10.2522/ptj.20130597
124 Green, B. N., Johnson, C. D., Snodgrass, J., Smith, M., & Dunn, A. S. (2016). Association between smoking and back pain in a cross-section of adult Americans. Cureus. https://doi.org/10.7759/cureus.806
125 LaRowe, L. R., & Ditre, J. W. (2020). Pain, nicotine, and tobacco smoking: Current state of the science. Pain, 161(8), 1688–1693. https://doi.org/10.1097/j.pain.0000000000001874
126 Taylor, D. H., Hasselblad, V., Henley, S. J., Thun, M. J., & Sloan, F. A. (2002). Benefits of smoking cessation for longevity. American Journal of Public Health, 92(6), 990–996. https://doi.org/10.2105/ajph.92.6.990
127 Baradaran Mahdavi, S., Riahi, R., Vahdatpour, B., & Kelishadi, R. (2021). Association between sedentary behavior and low back pain; a systematic review and meta-analysis. Health Promotion Perspectives, 11(4), 393–410. https://doi.org/10.34172/hpp.2021.50
128 Murtagh, E. M., Murphy, M. H., & Boone-Heinonen, J. (2010). Walking: The first steps in cardiovascular disease prevention. Current Opinion in Cardiology, 25(5), 490–496. https://doi.org/10.1097/hco.0b013e32833ce972
129 Hamilton, M. T., Healy, G. N., Dunstan, D. W., Zderic, T. W., & Owen, N. (2008). Too little exercise and too much sitting: Inactivity physiology and the need for new recommendations on sedentary behavior. Current Cardiovascular Risk Reports, 2(4), 292–298. https://doi.org/10.1007/s12170-008-0054-8
130 Goldberg, D. S., & McGee, S. J. (2011). Pain as a global public health priority. BMC Public Health, 11(1). https://doi.org/10.1186/1471-2458-11-770
131 Centers for Disease Control and Prevention. (2022, June 2). Death Rate Maps & Graphs. Centers for Disease Control and Prevention. Retrieved August 31, 2022, from https://www.cdc.gov/drugoverdose/deaths/index.html


Ch. 38: Acne Protocol

1 Mukherjee, J. S. Global Health and the Global Burden of Disease. Oxford Scholarship Online. 10.1 (2017); 93
2 Prescott, S. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organization Journal, 10. 29 (2017): 63-72
3 Elsaie, M. (2016). Hormonal treatment of acne vulgaris: An update. Clinical, Cosmetic and Investigational Dermatology, Volume 9, 241–248. https://doi.org/10.2147/ccid.s114830
4 American Chemical Society. (2011, May 11). The skinny on how shed skin reduces indoor air pollution. ScienceDaily. Retrieved May 23, 2022 from www.sciencedaily.com/releases/2011/05/110509114034.htm
5 Bowe, Whitney. The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women’s Dermatology, 1.2 (2015): 85–89
6 https://www.avogel.ca/download/Studies/Echinacea_potential_effect_on_acne_2010.pdf
7 Sharma, M., Schoop, R., Suter, A., & Hudson, J. B. (2010). The potential use of echinacea in acne: Control of Propionibacterium acnes growth and inflammation. Phytotherapy Research, 25(4), 517–521. https://doi.org/10.1002/ptr.3288
8 Cohen, M. M. (2014). Tulsi - Ocimum sanctum: A herb for all reasons. Journal of Ayurveda and Integrative Medicine, 5(4), 251. https://doi.org/10.4103/0975-9476.146554
9 erqueira, R. O., Frey, B. N., Leclerc, E., & Brietzke, E. (2017). Vitex Agnus Castus for premenstrual syndrome and premenstrual dysphoric disorder: A systematic review. Archives of Women’s Mental Health, 20(6), 713–719. https://doi.org/10.1007/s00737-017-0791-0
10 Shoemaker, S. V. (2020, May 27). Black cohosh: Benefits, dosage, side effects, and more. Healthline. Retrieved June 7, 2022, from https://www.healthline.com/health/food-nutrition/black-cohosh
11 Jung, J., Kwon, H., Hong, J., Yoon, J., Park, M., Jang, M., & Suh, D. (2014). Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: A randomised, double-blind, controlled trial. Acta Dermato Venereologica, 94(5), 521–525. https://doi.org/10.2340/00015555-1802
12 Kim, Y.-G., Lee, J.-H., Park, S., & Lee, J. (2022). The anticancer agent 3,3’-diindolylmethane inhibits multispecies biofilm formation by acne-causing bacteria and candida albicans. Microbiology Spectrum, 10(1). https://doi.org/10.1128/spectrum.02056-21
13 Grant, P., & Ramasamy, S. (2012). An update on plant derived anti-androgens. International Journal of Endocrinology and Metabolism, 10(2), 497–502. https://doi.org/10.5812/ijem.3644
14 Schmid-Wendtner, M.-H., & Korting, H. C. (2006). The ph of the skin surface and its impact on the barrier function. Skin Pharmacology and Physiology, 19(6), 296–302. https://doi.org/10.1159/000094670
15 Lee, M.-hee, Nam, T. G., Lee, I., Shin, E. J., Han, A.-ram, Lee, P., Lee, S.-Y., & Lim, T.-G. (2018). Skin anti-inflammatory activity of Rose petal extract (rosa gallica) through reduction of MAPK signaling pathway. Food Science & Nutrition, 6(8), 2560–2567. https://doi.org/10.1002/fsn3.870
16 Tadić, V., Arsić, I., Zvezdanović, J., Zugić, A., Cvetković, D., & Pavkov, S. (2017). The estimation of the traditionally used Yarrow (achillea millefolium L. asteraceae) oil extracts with anti-inflamatory potential in topical application. Journal of Ethnopharmacology, 199, 138–148. https://doi.org/10.1016/j.jep.2017.02.002
17 Greive, K., Heinicke, I., Barnes, T., & Adams, D. (2015). Evaluation of a topical treatment for the relief of sensitive skin. Clinical, Cosmetic and Investigational Dermatology, 405. https://doi.org/10.2147/ccid.s87509
18 Cha, H. M., Kim, S.-K., Kook, M. C., & Yi, T.-H. (2020). Lactobacillus paraplantarum THG-G10 as a potential anti-acne agent with anti-bacterial and anti-inflammatory activities. Anaerobe, 64, 102243. https://doi.org/10.1016/j.anaerobe.2020.102243
19 Nasri, H., Bahmani, M., Shahinfard, N., Moradi Nafchi, A., Saberianpour, S., & Rafieian Kopaei, M. (2015). Medicinal plants for the treatment of acne vulgaris: A review of recent evidences. Jundishapur Journal of Microbiology, 8(11). https://doi.org/10.5812/jjm.25580
20 Bassett, I. B., Barnetson, R. S., & Pannowitz, D. L. (1990). A comparative study of teatree oil versus benzoylperoxide in the treatment of acne. Medical Journal of Australia, 153(8), 455–458. https://doi.org/10.5694/j.1326-5377.1990.tb126150
21 Shah, R., & Peethambaran, B. (2018). Anti-inflammatory and anti-microbial properties of achillea millefolium in acne treatment. Immunity and Inflammation in Health and Disease, 241–248. https://doi.org/10.1016/b978-0-12-805417-8.00019-6
22 Pappas, A. (2009). The relationship of diet and acne. Dermato-Endocrinology, 1(5), 262–267. https://doi.org/10.4161/derm.1.5.10192
23 Bowe, Whitney. The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Womens Dermatology, 1.2 (2015): 85–89
24 Meixiong, J., Ricco, C., Vasavda, C., & Ho, B. K. (2022). Diet and acne: A systematic review. JAAD International, 7, 95–112. https://doi.org/10.1016/j.jdin.2022.02.012
25 Bowe, Whitney. The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women’s Dermatology, 1.2 (2015): 85–89
26 Cha, H. M., Kim, S.-K., Kook, M. C., & Yi, T.-H. (2020). Lactobacillus paraplantarum THG-G10 as a potential anti-acne agent with anti-bacterial and anti-inflammatory activities. Anaerobe, 64, 102243. https://doi.org/10.1016/j.anaerobe.2020.102243
27 Makrantonaki, E., Ganceviciene, R., & Zouboulis, C. C. (2011). An update on the role of the sebaceous gland in the pathogenesis of acne. Dermato-Endocrinology, 3(1), 41–49. https://doi.org/10.4161/derm.3.1.13900
28 Mayo Foundation for Medical Education and Research. (2020, October 14). How much water do you need to stay healthy? Mayo Clinic. Retrieved June 7, 2022, from https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in depth/water/art-20044256#
29 Grant, P. (2009). Spearmint herbal tea has significant anti-androgen effects in polycystic ovarian syndrome. A randomized controlled trial. Phytotherapy Research, 24(2), 186–188. https://doi.org/10.1002/ptr.2900
30 Kim, Y.-G., Lee, J.-H., Park, S., & Lee, J. (2022). The anticancer agent 3,3’-diindolylmethane inhibits multispecies biofilm formation by acne-causing bacteria and candida albicans. Microbiology Spectrum, 10(1). https://doi.org/10.1128/spectrum.02056-21
31 Carey, E. (2019, August 27). 10 low-glycemic fruits for diabetes. Healthline. Retrieved May 31, 2022, from https://www.healthline.com/health/diabetes/low-glycemic-fruits-for-diabetes
32 Aghasi, M., Golzarand, M., Shab-Bidar, S., Aminianfar, A., Omidian, M., & Taheri, F. (2019). Dairy intake and acne development: A meta-analysis of observational studies. Clinical Nutrition, 38(3), 1067–1075. https://doi.org/10.1016/j.clnu.2018.04.015
33 Sethi, S., Tyagi, S. K., & Anurag, R. K. (2016). Plant-based milk alternatives an emerging segment of Functional Beverages: A Review. Journal of Food Science and Technology, 53(9), 3408–3423. https://doi.org/10.1007/s13197-016-2328-3
34 Cervantes, J., Eber, A. E., Perper, M., Nascimento, V. M., Nouri, K., & Keri, J. E. (2017). The role of zinc in the treatment of acne: A review of the literature. Dermatologic Therapy, 31(1). https://doi.org/10.1111/dth.12576
35 Sturgeon, S. R., Heersink, J. L., Volpe, S. L., Bertone-Johnson, E. R., Puleo, E., Stanczyk, F. Z., Sabelawski, S., Wähälä, K., Kurzer, M. S., & Bigelow, C. (2008). Effect of dietary flaxseed on serum levels of estrogens and androgens in postmenopausal women. Nutrition and Cancer, 60(5), 612–618. https://doi.org/10.1080/01635580801971864
36 Maruyama, H., Sakamoto, T., Araki, Y., & Hara, H. (2010). Anti-inflammatory effect of bee pollen ethanol extract from cistus sp. of Spanish on carrageenan-induced rat hind paw edema. BMC Complementary and Alternative Medicine, 10(1). https://doi.org/10.1186/1472-6882-10-30
37 Zari, S., & Alrahmani, D. (2017). The association between stress and acne 359 among female medical students in Jeddah, Saudi Arabia. Clinical, Cosmetic and Investigational Dermatology, Volume 10, 503–506. https://doi.org/10.2147/ccid.s148499
38 El-akawi, Z., Abdel-Latif, N., & Abdul-Razzak, K. (2006). Does the plasma level of vitamins A and E affect acne condition? Clinical and Experimental Dermatology, 31(3), 430–434. https://doi.org/10.1111/j.1365-2230.2006.02106.x
39 Kubala, J. (2022, April 6). Vitamin A. Healthline. Retrieved June 7, 2022, from
https://www.healthline.com/nutrition/vitamin-a#toxicity-dosage
40 Walocko, F. M., Eber, A. E., Keri, J. E., AL-Harbi, M. A., & Nouri, K. (2017). The role of nicotinamide in acne treatment. Dermatologic Therapy, 30(5). https://doi.org/10.1111/dth.12481
41 Illinois, U. of. (2018, March 13). Niacin: Side effects, dosage, uses, and more. Healthline. Retrieved June 7, 2022, from https://www.healthline.com/health/drugs/niacin-oral-tablet
42 Lim, S.-K., Ha, J.-M., Lee, Y.-H., Lee, Y., Seo, Y.-J., Kim, C.-D., Lee, J.-H., & Im, M. (2016). Comparison of vitamin D levels in patients with and without acne: A case-control study combined with a randomized controlled trial. PLOS ONE, 11(8). https://doi.org/10.1371/journal.pone.0161162
43 Bjarnadottir, A. (2021, February 18). How much vitamin D should you take for optimal health? Healthline. Retrieved June 7, 2022, from https://www.healthline.com/nutrition/how-much-vitamin-d-to-take
44 Cervantes, J., Eber, A. E., Perper, M., Nascimento, V. M., Nouri, K., & Keri, J. E. (2017). The role of zinc in the treatment of acne: A review of the literature. Dermatologic Therapy, 31(1). https://doi.org/10.1111/dth.12576
45 Link, R. (2022, January 18). Zinc supplements: Benefits, dosage, and side effects. Healthline. Retrieved June 7, 2022, from https://www.healthline.com/nutrition/zinc-supplements
46 National Institute of Arthritis, Musculoskeletal Diseases, and Skin Diseases, Seen on: https://www.niams.nih.gov/health-topics/acne#tab-treatment
47 Blasiak, R. C., Stamey, C. R., Burkhart, C. N., Lugo-Somolinos, A., & Morrell, D. S. (2013). High-dose isotretinoin treatment and the rate of retrial, relapse, and adverse effects in patients with acne vulgaris. JAMA Dermatology, 149(12), 1392. https://doi.org/10.1001/jamadermatol.2013.6746
48 Prescott, S. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organization Journal, 10. 29 (2017): 63-72


Ch. 39: Kidney Protocol

1 https://www.niddk.nih.gov/health-information/kidney-disease/kidneys-how-theywork
2 https://www.niddk.nih.gov/health-information/kidney-disease/chronic-kidney-disease-ckd/causes
3 Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2019. Atlanta, GA: US Department of Health and Human Services. Centers for Disease Control and Prevention; 2019
4 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537833/
5 https://www.med.umich.edu/1libr/urology/LowOxalateDietGuidelines.pdf
6 https://www.uclahealth.org/core-kidney/electrolytes
7 Zhang, X., Nie, Q., Zhang, Z., Zhao, J., Zhang, F., Wang, C. ... Song, G. (2021). Resveratrol affects the expression of uric acid transporter by improving inflammation. Molecular Medicine Reports, 24, 564. https://doi.org/10.3892/mmr.2021.12203
8 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330481/
9 https://pubmed.ncbi.nlm.nih.gov/31378102/
10 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966103/
11 Reinhart KM, Coleman CI, Teevan C, Vachhani P, White CM. Effects of garlic on blood pressure in patients with and without systolic hypertension: A meta-analysis. Ann Pharmacother. 2008;42:1766–71 https://journals.sagepub.com/doi/abs/10.1345/aph.1L319
12 https://pubmed.ncbi.nlm.nih.gov/11807965/
13 Tassell, M. C., Kingston, R., Gilroy, D., Lehane, M., & Furey, A. (2010). Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacognosy reviews, 4(7), 32–41. https://doi.org/10.4103/0973-7847.65324 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249900/
14 Tabassum, N., & Ahmad, F. (2011). Role of natural herbs in the treatment of hypertension. Pharmacognosy reviews, 5(9), 30–40. https://doi.org/10.4103/0973-7847.79097 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210006/
15 https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC3210006
16 https://pubmed.ncbi.nlm.nih.gov/23042598/
17 https://www.health.harvard.edu/heart-health/meditation-and-a-relaxation-technique-to-lower-blood-pressure
18 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679769/
19 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655940/
20 https://pubmed.ncbi.nlm.nih.gov/9894438/
21 https://www.cdc.gov/diabetes/managing/diabetes-kidney-disease.html
22 https://pubmed.ncbi.nlm.nih.gov/842585/
23 https://pubmed.ncbi.nlm.nih.gov/19800084/
24 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027280/
25 https://pubmed.ncbi.nlm.nih.gov/21480806/
26 https://pubmed.ncbi.nlm.nih.gov/19839001/
27 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943541/
28 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376420/
29 Ma H.-T., Hsieh J.-F., Chen S.-T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry.
2015;114:109–113. doi: 10.1016/j.phytochem.2015.02.017
30 Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. J Ethnopharmacol. 2017;196:47-57
31 https://pubmed.ncbi.nlm.nih.gov/18813412/
32 https://pubmed.ncbi.nlm.nih.gov/19114224/
33 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829575/
34 https://www.verywellhealth.com/
35 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637251/
36 https://pubmed.ncbi.nlm.nih.gov/32824103/
37 Zhang, H. W., Lin, Z. X., Tung, Y. S., Kwan, T. H., Mok, C. K., Leung, C., & Chan, L. S. (2014). Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease. The Cochrane database of systematic reviews, (12), CD008353. https://doi.org/10.1002/14651858.CD008353.pub2
38 Zhang, H. W., Lin, Z. X., Tung, Y. S., Kwan, T. H., Mok, C. K., Leung, C., & Chan, L. S. (2014). Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease. The Cochrane database of systematic reviews, (12), CD008353. https://doi.org/10.1002/14651858.CD008353.pub2
39 https://pubmed.ncbi.nlm.nih.gov/32856245/
40 https://pubmed.ncbi.nlm.nih.gov/15638071
41 https://pubmed.ncbi.nlm.nih.gov/11746861/
42 https://t.ly/hJ-S
43 Mahdavi, R., Khabbazi, T., & Safa, J. (2019). Alpha lipoic acid supplementation improved antioxidant enzyme activities in hemodialysis patients. International journal for vitamin and nutrition research, 89(3-4), 161–167 https://doi.org/10.1024/0300-9831/a000552
44 Hsu, S. P., Chiang, C. K., Yang, S. Y., & Chien, C. T. (2010). N-acetylcysteine for the
management of anemia and oxidative stress in hemodialysis patients. Nephron. Clinical
practice, 116(3), c207–c216 https://doi.org/10.1159/000317201
45 Albertoni, G., & Schor, N. (2015). Resveratrol plays important role in protective mechanisms in renal disease--mini-review, 37(1), 106–114. https://doi.org/10.5935/0101-2800.20150015


Ch. 40: Anti-Aging Protocol

1 https://www.pewresearch.org/fact-tank/2016/04/21/worlds-centenarian-population-projected-to-grow-eightfold-by-2050/
2 Lombard DB, Chua KF et al.: DNA Repair, Genome Stability, and Aging. Cell 2005;120(4): 497-512
3 Dizdaroglu, M., Jaruga, P., Birincioglu, M., & Rodriguez, H. (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free radical biology & medicine, 32(11), 1102–1115. https://doi.org/10.1016/s0891-5849(02)00826-2
4 Lagouge M, Larsson NG: The Role of Mitochondrial DNA Mutations and Free Radicals in Disease and Aging. J. Intern. Med. 2013;273(6):529-543
5 https://www.ox.ac.uk/news/2022-07-26-genetic-study-provides-evidence-alcohol-accelerates-biological-aging
6 Aubert, G. and P. M. Lansdorp, Telomeres and aging. Physiol Rev, 2008. 88(2): p. 557-579
7 López-Otín C, Blasco MA et al.: The hallmarks of aging. Cell 2013;153 (6):1194-1217
8 Yamada M, Naito K, et al.: Prevalence of atherosclerosis in relation to atomic bomb radiation exposure: An RERF Adult Health Study. International Journal of Radiation Biology 2005; 81:821-6
9 Morita A. (2007). Tobacco smoke causes premature skin aging. Journal of dermatological science, 48(3), 169–175. https://doi.org/10.1016/j.jdermsci.2007.06.015. https://pubmed.ncbi.nlm.nih.gov/17951030/
10 Crimmins EM. Lifespan and Healthspan: Past, Present, and Promise. Gerontologist. 2015 Dec;55(6):901-11. doi: 10.1093/geront/gnv130. Epub 2015 Nov 10. PMID: 26561272; PMCID: PMC4861644. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4861644/
11 https://www.rerf.or.jp/en/programs/roadmap_e/health_effects-en/late-en/aging/
12 https://www.ox.ac.uk/news/2022-07-26-genetic-study-provides-evidence-alcohol-accelerates-biological-aging
13 Thornton MJ. Estrogens and aging skin. Dermatoendocrinol. 2013 Apr 1;5(2):264-
70. doi: 10.4161/derm.23872. PMID: 24194966; PMCID: PMC3772914. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772914/
14 Morley, John E., Diabetes and Aging: Epidemiologic Overview, Clinics in Geriatric Medicine, Volume 24, Issue 3, 2008, Pages 395-405, ISSN 0749-0690, https://doi.org/10.1016/j.cger.2008.03.005
15 Mirian Ayumi Kurauti, Gabriela Moreira Soares, Carine Marmentini, Gabriela Alves Bronczek, Renato Chaves Souto Branco, Antonio Carlos Boschero, Insulin and aging, Editor(s): Gerald Litwack, Vitamins and Hormones, Academic Press, Vol 115, 2021, Pages 185-219, ISSN 0083-6729, ISBN 9780323855488, https://doi.org/10.1016/bs.vh.2020.12.010
16 Goronzy JJ, Weyand CM. Immune aging and autoimmunity. Cell Mol Life Sci. 2012 360 May;69(10):1615-23. doi: 10.1007/s00018-012-0970-0. Epub 2012 Apr 1. PMID: 22466672; PMCID: PMC4277694. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277694/ and https://my.clevelandclinic.org/health/diseases/21624-autoimmune-diseases
17 Hammond B.R., Fletcher L.M., Roos F., Wittwer J., Schalch W. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Investig. Ophthalmol. Vis. Sci. 2014;55:8583–8589. doi: 10.1167/iovs.14-15573
18 Khachik F. Distribution and metabolism of dietary carotenoids in humans as a criterion for development of nutritional supplements. Pure Appl. Chem. 2006;78:1551–1557. doi: 10.1351/pac200678081551. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6539799/
19 Prasad K.N., Wu M., Bondy S.C. Telomere shortening during aging: attenuation by antioxidants and anti-inflammatory agents. Mech. Aging Dev. 2017;164:61–66. doi: 10.1016/j.mad.2017.04.004
20 https://t.ly/LGm3. https://t.ly/CYgG. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146365/
21 Herrera-Arellano A., Flores-Romero S., Chávez-Soto M.A., Tortoriello J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: A controlled and randomized clinical trial. Phytomedicine. 2004;11:375–382. doi: 10.1016/j.phymed.2004.04.001
22 Zafra-Stone S., Yasmin T., Bagchi M., Chatterjee A., Vinson J.A., Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007;51:675–683. doi: 10.1002/mnfr.200700002.
23 Feitelson M.A., Arzumanyan A., Kulathinal R.J., Blain S.W., Holcombe R.F., Mahajna J., Marino M., Martinez-Chantar M.L., Nawroth R., Sanchez-Garcia I., et al. Sustained proliferation in cancer: Therapeutic targets. Semin. Cancer Biol. 2016;35:25–54. doi: 10.1016/j.semcancer.2015.02.006
24 Parletta N., Milte C.M., Meyer B.J. Nutritional modulation of cognitive function and mental health. J. Nutr. Biochem. 2013;24:725–743
25 Janice K. Kiecolt-Glaser, Martha A. Belury, Rebecca Andridge, William B. Malarkey, Beom Seuk Hwang, Ronald Glaser. Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: A randomized controlled trial. Brain, Behavior, and Immunity, 2012; 26 (6) Ohio State University. (2012, October 1). Omega-3 supplements may slow a biological effect of aging. ScienceDaily
26 USDA, US Department of Agriculture, Agricultural Research Service https://fdc.nal.usda.gov/fdc-app.html#/food-details/175168/nutrients
27 Zasada, Malwina et al: “Retinoids: active molecules influencing skin structure formation in cosmetic and dermatological treatments”, August 30 2019, ncbi.nlm.nih.gov/pmc/articles/PMC6791161/
28 Pullar, J. M., Carr, A. C., & Vissers, M. (2017). The Roles of Vitamin C in Skin Health. Nutrients, 9(8), 866. https://doi.org/10.3390/nu9080866.
29 Goodwill, A. M., & Szoeke, C. (2017). A Systematic Review and Meta-Analysis of The Effect of Low Vitamin D on Cognition. Journal of the American Geriatrics Society, 65(10), 2161–2168. https://doi.org/10.1111/jgs.15012 https://pubmed.ncbi.nlm.nih.gov/28758188/
30 Mark, K. A., Dumas, K. J., Bhaumik, D., Schilling, B., Davis, S., Oron, T. R., Sorensen, D. J., Lucanic, M., Brem, R. B., Melov, S., Ramanathan, A., Gibson, B. W., & Lithgow, G. J. (2016). Vitamin D Promotes Protein Homeostasis and Longevity via the Stress Response Pathway Genes skn-1, ire-1, and xbp-1. Cell reports, 17(5), 1227–1237. https://doi.org/10.1016/j.celrep.2016.09.086. pubmed.ncbi.nlm.nih.gov/27783938/
31 Meehan M, Penckofer S. The Role of Vitamin D in the Aging Adult. J Aging Gerontol. 2014 Dec;2(2):60-71. doi: 10.12974/2309-6128.2014.02.02.1. PMID: 25893188; PMCID: PMC4399494. ncbi.nlm.nih.gov/pmc/articles/PMC4399494/
32 Meydani SN, Lewis ED, Wu D. Perspective: Should Vitamin E Recommendations for Older Adults Be Increased? Adv Nutr. 2018 Sep 1;9(5):533-543. doi: 10.1093/advances/nmy035. PMID: 30107519; PMCID: PMC6140432. ncbi.nlm.nih.gov/pmc/articles/
PMC6140432/
33 Schagen SK, Zampeli VA, Makrantonaki E, Zouboulis CC. Discovering the link between nutrition and skin aging. Dermatoendocrinol. 2012 Jul 1;4(3):298-307. doi: 10.4161/derm.22876. PMID: 23467449; PMCID: PMC3583891. ncbi.nlm.nih.gov/pmc/articles/PMC3583891/
34 Emami, M. R., Safabakhsh, M., Alizadeh, S., Asbaghi, O., & Khosroshahi, M. Z. (2019). Effect of vitamin E supplementation on blood pressure: a systematic review and meta-analysis. Journal of human hypertension, 33(7), 499–507. https://doi.org/10.1038/s41371-019-0192-0. pubmed.ncbi.nlm.nih.gov/30846828/ Browne D, McGuinness
B, Woodside JV, McKay GJ. Vitamin E and Alzheimer’s disease: what do we know so far? Clin Interv Aging. 2019 Jul 18;14:1303-1317. doi: 10.2147/CIA.S186760. PMID: 31409980; PMCID: PMC6645610. ncbi.nlm.nih.gov/pmc/articles/PMC6645610/
35 Prasad, Ananda S.: “Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease”, March 6 2013, ncbi.nlm.nih.gov/pmc/articles/PMC3649098/
36 Park H, Kim CW, Kim SS, Park CW. The therapeutic effect and the changed serum zinc level after zinc supplementation in alopecia areata patients who had a low serum zinc level. Ann Dermatol. 2009 May;21(2):142-6. doi: 10.5021/ad.2009.21.2.142. Epub 2009 May 31. PMID: 20523772; PMCID: PMC2861201. ncbi.nlm.nih.gov/pmc/articles/PMC2861201/
37 Ángel Julio Romero Cabrera: Pathobiol Aging Age Relat Dis. 2015; 5: Published online 2015 Feb 5. doi: 10.3402/pba.v5.25592 Zinc, aging, and immunosenescence: an overview
38 Dang Y, An Y, He J, Huang B, Zhu J, Gao M, Zhang S, Wang X, Yang B, Xie Z. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell. 2020 Jan;19(1):e13060. doi: 10.1111/acel.13060. Epub 2019 Nov 26. PMID: 31773901; PMCID: PMC6974710
39 Qiu, S., Sun, H., Zhang, A. H., Xu, H. Y., Yan, G. L., Han, Y., & Wang, X. J. (2014). Natural alkaloids: basic aspects, biological roles, and future perspectives. Chinese journal of natural medicines, 12(6), 401–406. https://doi.org/10.1016/S1875-5364(14)60063-7. https://pubmed.ncbi.nlm.nih.gov/24969519/
40 Zhang, C., Sheng, J., Li, G., Zhao, L., Wang, Y., Yang, W., Yao, X., Sun, L., Zhang, Z., & Cui, R. (2020). Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review. Frontiers in pharmacology, 10, 1461. https://doi.org/10.3389/fphar.2019.01461
41 Haijing Zhang, Chunhui Zhao, Guoqiong Cao, Limin Guo, Shuai Zhang, Yuexia Liang, Chunxia Qin, Ping Su, Hang Li, Wensheng Zhang. Berberine modulates amyloid-β peptide generation by activating AMP-activated protein kinase. Neuropharmacology, Vol 125, 2017, Pages 408-417, ISSN 0028-3908. https://doi.org/10.1016/j.neuropharm.2017.08.013
42 Wang, H., Zhu, C., Ying, Y., Luo, L., Huang, D. and Luo, Z. (2017). Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget, [online] 9(11), pp.10135–10146. doi:10.18632/oncotarget.20807
43 Hoffman, Richard: “Micronutrient deficiencies in the elderly – could ready meals be part of the solution?”, January 12 2017, ncbi.nlm.nih.gov/pmc/articles/PMC5465850/
44 Lupu, Mihaela-Adi et al: “Beneficial effects of food supplements based on hydrolyzed collagen for skin care (Review)”, July 2020, ncbi.nlm.nih.gov/pmc/articles/PMC7271718/
45 Bolke L, Schlippe G, Gerß J, Voss W. A Collagen Supplement Improves Skin Hydration, Elasticity, Roughness, and Density: Results of a Randomized, Placebo-Controlled, Blind Study. Nutrients. 2019 Oct 17;11(10):2494. doi: 10.3390/nu11102494. PMID: 31627309; PMCID: PMC6835901. https://ncbi.nlm.nih.gov/pmc/articles/PMC6835901/
46 Herskovits AZ, Guarente L. Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res. 2013 Jun;23(6):746-58. doi: 10.1038/cr.2013.70. Epub 2013 May 21. PMID: 23689277; PMCID: PMC3674397
47 Tarantini, S., et al (2019). Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biology, [online] 24, p.101192. doi:10.1016/j.redox.2019.101192.
48 Picciotto, N.E., Gano, L.B., Johnson, L.C., Martens, C.R., Sindler, A.L., Mills, K.F., Imai, S. and Seals, D.R. (2016). Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell, 15(3), pp.522–530. doi:10.1111/acel.12461
49 Zhou, D. D., Luo, M., Huang, S. Y., Saimaiti, A., Shang, A., Gan, R. Y., & Li, H. B. (2021). Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxidative medicine and cellular longevity, 2021, 9932218. https://doi.org/10.1155/2021/9932218
50 Petruk, Ganna et al: “Antioxidants from Plants Protect against Skin Photoaging”, August 2 2018, ncbi.nlm.nih.gov/pmc/articles/PMC6098906/
51 Li Juan et al: “A comparative study of anti-aging properties and mechanism: resveratrol and caloric restriction”, September 12 2017, ncbi.nlm.nih.gov/pmc/articles/PMC5630366/
52 Madeo, F., Carmona-Gutierrez, D., Kepp, O. and Kroemer, G. (2018). Spermidine delays aging in humans. Aging, 10(8), pp.2209–2211. doi:10.18632/aging.101517
53 Eisenberg, T., Abdellatif, M., Schroeder, S. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22, 1428–1438 (2016). https://doi.org/10.1038/nm.4222
54 Mishra, Shrikant et al: “The effect of curcumin (turmeric) on Alzheimer’s disease: An overview”, January 2008, ncbi.nlm.nih.gov/pmc/articles/PMC2781139/
55 Shen, Li Rong et al: “Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila”, August 2013, pubmed.ncbi.nlm.nih.gov/22653297/
56 Morse, Robert: “Curcumin’s Anti-Aging Properties”, October 2021, lifeextension.com/magazine/2021/ss/curcumin-anti-aging
57 Shalini V.K., Srinivas L. Fuel smoke condensate induced DNA damage in human lymphocytes and protection by turmeric (Curcuma longa) Mol. Cell. Biochem. 1990;95:21–
30. doi: 10.1007/BF00219526. [PubMed] [CrossRef] [Google Scholar]
58 Chen X., Wang J., Fu Z., Zhu B., Wang J., Guan S., Hua Z. Curcumin activates DNA repair pathway in bone marrow to improve carboplatin-induced myelosuppression. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-017-16436-9. [PMC free article] [PubMed] [Cross-Ref] [Google Scholar]
59 Jiao, C., Xie, Y., Yun, H., Liang, H., He, C., Jiang, A., Wu, Q., & Yang, B. B. (2020). The effect of Ganoderma lucidum spore oil in early skin wound healing: interactions of skin microbiota and inflammation. Aging, 12(14), 14125–14140. https://doi.org/10.18632/aging.103412 https://pubmed.ncbi.nlm.nih.gov/32692722/
60 Wang J, Cao B, Zhao H, Feng J. Emerging Roles of Ganoderma Lucidum in Anti-Aging. Aging Dis. 2017 Dec 1;8(6):691-707. doi: 10.14336/AD.2017.0410. PMID: 29344411; PMCID: PMC5758346
61 Kumar R., Gupta K., Saharia K., Pradhan D., Subramaniam J.R. Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann. Neurosci. 2013;20:13. doi: 10.5214/ans.0972.7531.200106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62 Akhoon B.A., Pandey S., Tiwari S., Pandey R. Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp. Gerontol. 2016;78:47–56. doi: 10.1016/j. exger.2016.03.004. [PubMed] [CrossRef] [Google Scholar] 361
63 Raguraman V., Subramaniam J. Withania somnifera Root Extract Enhances Telomerase Activity in the Human HeLa Cell Line. Adv. Biosci. Biotechnol. 2016;7:199–204. doi: 10.4236/abb.2016.74018. [CrossRef] [Google Scholar]
64 https://pubmed.ncbi.nlm.nih.gov/18803231/ Ji, D. B., Ye, J., Li, C. L., Wang, Y. H., Zhao, J., & Cai, S. Q. (2009). Antiaging effect of Cordyceps sinensis extract. Phytotherapy research: PTR, 23(1), 116–122. https://doi.org/10.1002/ptr.2576
https://www.hindawi.com/journals/ecam/2012/273435/, https://europepmc.org/article/med/15506292, https://www.sciencedirect.com/science/article/abs/pii/S0141813020330221 https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra23612j/unauth
65 Lai, P. L., Naidu, M., Sabaratnam, V., Wong, K. H., David, R. P., Kuppusamy, U. R., Abdullah, N., & Malek, S. N. (2013). Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. International journal of medicinal mushrooms, 15(6), 539–554. https://doi.org/10.1615/intjmedmushr.v15.i6.30 https://pubmed.ncbi.nlm.nih.gov/24266378/
66 Mori, K., Inatomi, S., Ouchi, K., Azumi, Y., & Tuchida, T. (2009). Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytotherapy research : PTR, 23(3), 367–372. https://doi.org/10.1002/ptr.2634 https://pubmed.ncbi.nlm.nih.gov/18844328/
67 Xu, Hui, et al. “Chemical Analysis of Hericium Erinaceum Polysaccharides and Effect of the Polysaccharides on Derma Antioxidant Enzymes, MMP-1 and TIMP-1 Activities.” International Journal of Biological Macromolecules, vol. 47, no. 1, 1 July 2010, pp. 33–36, pubmed.ncbi.nlm.nih.gov/20380848/, 10.1016/j.ijbiomac.2010.03.024. Accessed 18 May 2022.
68 Noh, Hyung Jun, et al. “Chemical Constituents of Hericium Erinaceum Associated with the Inhibitory Activity against Cellular Senescence in Human Umbilical Vascular Endothelial Cells.” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 30, no. 6, 13 Feb. 2015, pp. 934–940, 10.3109/14756366.2014.995181. Accessed 1 Sept. 2022.
69 de Oliveira Zanuso, B., de Oliveira Dos Santos, A. R., Miola, V., Guissoni Campos, L. M., Spilla, C., & Barbalho, S. M. (2022). Panax ginseng and aging related disorders: A systematic review. Experimental gerontology, 161, 111731. https://doi.org/10.1016/j.exger.2022.111731
70 Naveed, Akhtar & Zaman, Shahiq uz & Khan, Barkat & Khan, Haji M. shoaib & Ahmad, Mahmood & Rasool, Fatima & Mahmood, Tariq & Rasul, Akhtar. (2011). Evaluation of various functional skin parameters using a topical cream of Calendula officinalis extract. African journal of pharmacy and pharmacology. 5. 199-206
71 Pobłocka-Olech, L., Inkielewicz-Stepniak, I., & Krauze-Baranowska, M. (2019). Anti-inflammatory and antioxidative effects of the buds from different species of Populus in human gingival fibroblast cells: Role of bioflavanones. Phytomedicine, 56, 1-9
72 Warsito, M. F., & Kusumawati, I. (2019). The impact of herbal products in the prevention, regeneration and delay of skin aging. Reviews on Biomarker Studies in Aging and Anti-Aging Research, 155-174
73 https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC5485961/ Mármol, I., Sánchez-de-Diego, C., Jiménez-Moreno, N., Ancín-Azpilicueta, C., & Rodríguez-Yoldi, M. J. (2017). Therapeutic Applications of Rose Hips from Different Rosa Species. International journal of molecular sciences, 18(6), 1137. https://doi.org/10.3390/ijms18061137
74 https://www.health.harvard.edu/staying-healthy/exercise-and-aging-can-you-walkaway-from-father-time
Exercise and aging Maria Antoinette Fiatarone Singh, MD, FRACPa,b,* aUniversity of Sydney, East Street, Lidcombe, NSW 2141, Australia bHebrew Rehabilitation Center for Aged, 1200 Center Street, Roslindale, MA 02131, USA Clin Geriatr Med 20 (2004) 201 – 221; [1] American College of Sports Medicine, Pollock M, Gaesser G, et al. ACSM Position Stand on the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 1998;30(6): 975 – 91. [2] American Geriatrics Society, British Geriatrics Society, American Academy of Orthopaedic Surgeons Panel on Falls Prevention. Guideline for the prevention of falls in older persons. J Am Geriatr Soc 2001;49:664 – 72. [3] American Diabetic Association. Diabetes mellitus and exercise: position statement. Diabetes Care 1990;13(7):804 – 5. [4] Drinkwater B, Grimson S, Cullen-Raab D, Harter-Snow C. ACSM position stand on osteoporosis and exercise. Med Sci Sports Exerc 1995;27(4):i – vii; [5] Pate RR, Pratt M, Blair SN, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995;273(5):402 – 7; [6] Bouchard C, Shephard R, Stephen T, et al. Exercise, fitness and health: a consensus of current knowledge. Champaign, IL: Human Kinetic Publisher; 1990; [7] Bouchard C. Physical Activity, Fitness, and Health: International Proceedings and Consensus Statement. Human Kinetics. Champaign (IL): 1994; [8] US Department of Health and Human Services. Physical activity and health: a report of the Surgeon General. Atlanta: US Department of Health and Human Services, Centers for Disease 212 M.A. Fiatarone Singh / Clin Geriatr Med 20 (2004) 201–221 Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996; [9] Mazzeo R, Cavanaugh P, Evans W, et al. Exercise and physical activity for older adults. Med Sci Sports Exerc 1998;30(6):992 – 1008; [10] American Geriatrics Society Panel on Exercise and Osteoarthritis. Exercise prescription for older adults with osteoarthritis pain: consensus practice recommendations. A supplement to the AGS Clinical Practice Guidelines on the Management of Chronic Pain in Older Adults. J Am Geriatr Soc 2001;49:808 – 23; [11] US Department of Health and Human Services. Healthy people 2010 [draft for public comment]. Washington, DC: US Department of Health and Human Services; 1999; [12] Christmas C, Andersen R. Exercise and older patients: guidelines for the clinician. J Am Geriatr Soc 2000;48:318 – 24
75 https://www.endocrine.org/topics/edc/what-edcs-are/common-edcs
76 Samaras, Nikolaos, et al. “Off-Label Use of Hormones as an Antiaging Strategy: A Review.” Clinical Interventions in Aging, July 2014, p. 1175, www.ncbi.nlm.nih.gov/pmc/articles/PMC4116364/, 10.2147/cia.s48918. Accessed 18 Aug. 2019
77 Satriyasa, Bagus Komang. “Botulinum Toxin (Botox) a for Reducing the Appearance of Facial Wrinkles: A Literature Review of Clinical Use and Pharmacological Aspect.” Clinical, Cosmetic and Investigational Dermatology, vol. Volume 12, no. 12, Apr. 2019, pp. 223–228, www.ncbi.nlm.nih.gov/pmc/articles/PMC6489637/, 10.2147/ccid.s202919. Hyaluronan-based hydrogels as dermal fillers: The biophysical properties that translate into a “volumetric” effect a
78 Saccon, T. D., Nagpal, R., Yadav, H., Cavalcante, M. B., Nunes, A., Schneider, A., Gesing, A., Hughes, B., Yousefzadeh, M., Tchkonia, T., Kirkland, J. L., Niedernhofer, L. J., Robbins, P. D., & Masternak, M. M. (2021). Senolytic Combination of Dasatinib and Quercetin Alleviates Intestinal Senescence and Inflammation and Modulates the Gut Microbiome
in Aged Mice. The journals of gerontology. Series A, Biological sciences and medical sciences, 76(11), 1895–1905. https://doi.org/10.1093/gerona/glab002
79 Klimova, Blanka, et al. “Anti-Aging Drugs – Prospect of Longer Life?” Current Medicinal Chemistry, vol. 25, no. 17, 22 May 2018, pp. 1946–1953, 10.2174/0929867325666171129215251. Accessed 14 Mar. 2021


Ch. 41: Energy Protocol

1 Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019 Jul 16;11(7):1613. doi: 10.3390/nu11071613. PMID: 31315227; PMCID: PMC6682904 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682904/
2 Meredith Genevive R., Rakow Donald A., Eldermire Erin R. B., Madsen Cecelia G., Shelley Steven P., Sachs Naomi, Minimum Time Dose in Nature to Positively Impact the Mental Health of College-Aged Students, and How to Measure it: A Scoping Review, Frontiers in Psychology, 2020, doi=10.3389/fpsyg.2019.02942
3 Tandon, N., & Yadav, S. S. (2020). Safety and clinical effectiveness of Withania Somnifera (Linn.) Dunal root in human ailments. Journal of ethnopharmacology, 255, 112768. https://doi.org/10.1016/j.jep.2020.112768
4 Friedman M. (2015). Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. Journal of agricultural and food chemistry, 63(32), 7108–7123. https://doi.org/10.1021/acs.jafc.5b02914
5 Tang, W., Gao, Y., Chen, G., Gao, H., Dai, X., Ye, J., Chan, E., Huang, M., & Zhou, S. (2005). A randomized, double-blind and placebo-controlled study of a Ganoderma lucidum polysaccharide extract in neurasthenia. Journal of medicinal food, 8(1), 53–58. https://doi.org/10.1089/jmf.2005.8.53
6 Lin B, Li S. Cordyceps as an Herbal Drug. In: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 5. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92758/
7 Bach HV, Kim J, Myung SK, Cho YA. Efficacy of Ginseng Supplements on Fatigue and Physical Performance: A Meta-analysis. J Korean Med Sci. 2016 Dec;31(12):1879-1886. doi: 10.3346/jkms.2016.31.12.1879. PMID: 27822924; PMCID: PMC5102849
8 Lekomtseva, Y., Zhukova, I., & Wacker, A. (2017). Rhodiola rosea in Subjects with Prolonged or Chronic Fatigue Symptoms: Results of an Open-Label Clinical Trial. Complementary medicine research, 24(1), 46–52. https://doi.org/10.1159/000457918
9 Kahnum, F. (2006, November 20). Rhodiola rosea: A Versatile Adaptogen. Comprehensive Reviews. Retrieved February 7, 2022, from https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1541-4337.2005.tb00073.x
10 Yepes-Pérez AF, Herrera-Calderon O, Sánchez-Aparicio JE, Tiessler-Sala L, Maréchal JD, Cardona-G W. Investigating Potential Inhibitory Effect of Uncaria tomentosa (Cat’s Claw) against the Main Protease 3CLpro of SARS-CoV-2 by Molecular Modeling. Evid Based Complement Alternat Med. 2020 Sep 30;2020:4932572. doi:
10.1155/2020/4932572. PMID: 33029165; PMCID: PMC7532411
11 Kaur G, Invally M, Sanzagiri R, Buttar HS. Evaluation of the antidepressant activity of Moringa oleifera alone and in combination with fluoxetine. J Ayurveda Integr Med. 2015 Oct-Dec;6(4):273-9. doi: 10.4103/0975-9476.172384. PMID: 26834427; PMCID: PMC4719488
12 Moss, M., Hewitt, S., Moss, L., & Wesnes, K. (2008). Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang. The International journal of neuroscience, 118(1), 59–77 https://doi.org/10.1080/00207450601042094
13 Tardy AL, Pouteau E, Marquez D, Yilmaz C, Scholey A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients. 2020 Jan 16;12(1):228. doi: 10.3390/nu12010228. PMID: 31963141; PMCID: PMC7019700
14 DeLoughery T. G. (2017). Iron Deficiency Anemia. The Medical clinics of North America, 101(2), 319–332. https://doi.org/10.1016/j.mcna.2016.09.004
15 Al Alawi AM, Majoni SW, Falhammar H. Magnesium and Human Health: Perspectives and Research Directions. Int J Endocrinol. 2018 Apr 16;2018:9041694. doi: 10.1155/2018/9041694. PMID: 29849626; PMCID: PMC5926493
16 Ayers, J., Cook, J., Koenig, R. A., Sisson, E. M., & Dixon, D. L. (2018). Recent Developments in the Role of Coenzyme Q10 for Coronary Heart Disease: A Systematic Review. Current atherosclerosis reports, 20(6), 29. https://doi.org/10.1007/s11883018-0730-1


Ch. 42: Hair Loss Protocol

1 Hagenaars, S. P., Hill, W. D., Harris, S. E., Ritchie, S. J., Davies, G., Liewald, D. C., Gale, C. R., Porteous, D. J., Deary, I. J., & Marioni, R. E. (2017). Genetic prediction of male pattern baldness. PLoS genetics, 13(2), e1006594 https://doi.org/10.1371/journal.pgen.1006594362
2 Li R, Brockschmidt FF, Kiefer AK, Stefansson H, Nyholt DR, Song K, Vermeulen SH, Kanoni S, Glass D, Medland SE, Dimitriou M, Waterworth D, Tung JY, Geller F, Heilmann S, Hillmer AM, Bataille V, Eigelshoven S, Hanneken S, Moebus S, Herold C, den Heijer M, Montgomery GW, Deloukas P, Eriksson N, Heath AC, Becker T, Sulem P, Mangino M,
Vollenweider P, Spector TD, Dedoussis G, Martin NG, Kiemeney LA, Mooser V, Stefansson K, Hinds DA, Nöthen MM, Richards JB. Six novel susceptibility Loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 2012 May;8(5): e1002746. doi: 10.1371/journal.pgen.1002746. Epub 2012 May 31. PMID: 22693459; PMCID: PMC3364959
3 Cranwell W, Sinclair R. Male Androgenetic Alopecia. [Updated 2016 Feb 29]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA); MDText.com, Inc.; 2000
4 Johnson, J. J., Bailey, H. H., & Mukhtar, H. (2010). Green tea polyphenols for prostate cancer chemoprevention: a translational perspective. Phytomedicine: international journal of phytotherapy and phytopharmacology, 17(1), 3–13. https://doi.org/10.1016/j.phymed.2009.09.011
5 Harvey C. J. (2020). Combined Diet and Supplementation Therapy Resolves Alopecia Areata in a Paediatric Patient: A Case Study. Cureus, 12(11), e11371. https://doi.org/10.7759/cureus.11371
6 Pham, C. T., Romero, K., Almohanna, H. M., Griggs, J., Ahmed, A., & Tosti, A. (2020). The Role of Diet as an Adjuvant Treatment in Scarring and Nonscarring Alopecia. Skin appendage disorders, 6(2), 88–96. https://doi.org/10.1159/000504786
7 Morinaga, H., Mohri, Y., Grachtchouk, M., Asakawa, K., Matsumura, H., Oshima, M., Takayama, N., Kato, T., Nishimori, Y., Sorimachi, Y., Takubo, K., Suganami, T., Iwama, A., Iwakura, Y., Dlugosz, A. A., & Nishimura, E. K. (2021). Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature, 595(7866), 266–271. https://doi.org/10.1038/s41586-021-03624-x
8 David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820
9 Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X., & Xu, K. (2018). Inflammatory Links Between High Fat Diets and Diseases. Frontiers in immunology, 9, 2649. https://doi.org/10.3389/fimmu.2018.02649
10 Hasegawa, S., Ichiyama, T., Sonaka, I., Ohsaki, A., Okada, S., Wakiguchi, H., Kudo, K., Kittaka, S., Hara, M., & Furukawa, S. (2012). Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clinical and experimental immunology, 167(2), 269–274. https://doi.org/10.1111/j.1365-2249.2011.04519.x
11 Brzezińska-Wcisło L. (2001). Ocena skuteczności witaminy B6 i pantotenianu wapniowego na wzrost włosów w aspekcie klinicznym i trichologicznym w łysieniu rozlanym kobiet [Evaluation of vitamin B6 and calcium pantothenate effectiveness on hair growth from clinical and trichographic aspects for treatment of diffuse alopecia in women]. Wiadomosci lekarskie (Warsaw, Poland: 1960), 54(1-2), 11–18.
12 Stamatiadis, D., Bulteau-Portois, M. C., & Mowszowicz, I. (1988). Inhibition of 5 alpha-reductase activity in human skin by zinc and azelaic acid. The British journal of dermatology, 119(5), 627–632. https://doi.org/10.1111/j.1365-2133.1988.tb03474.x
13 Kalkan, G., Yigit, S., Karakuş, N., Ateş, O., Bozkurt, N., Ozdemir, A., & Pancar, G. Ş. (2013). Methylenetetrahydrofolate reductase C677T mutation in patients with alopecia areata in Turkish population. Gene, 530(1), 109–112. https://doi.org/10.1016/j.gene.2013.08.016
14 Glynis A. (2012). A Double-blind, Placebo-controlled Study Evaluating the Efficacy of an Oral Supplement in Women with Self-perceived Thinning Hair. The Journal of clinical and aesthetic dermatology, 5(11), 28–34.
15 Varani, J., Dame, M. K., Rittie, L., Fligiel, S. E., Kang, S., Fisher, G. J., & Voorhees, J. J. (2006). Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. The American journal of pathology, 168(6), 1861–1868. https://doi.org/10.2353/ajpath.2006.051302
16 Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino acids, 37(1), 1–17. https://doi.org/10.1007/s00726-009-0269-0
17 Meerarani, P., Ramadass, P., Toborek, M., Bauer, H. C., Bauer, H., & Hennig, B. (2000). Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alpha. The American journal of clinical nutrition, 71(1), 81–87. https://doi.org/10.1093/ajcn/71.1.81
18 Beoy, L. A., Woei, W. J., & Hay, Y. K. (2010). Effects of tocotrienol supplementation on hair growth in human volunteers. Tropical life sciences research, 21(2), 91–99
19 Ablon G. (2015). A 3-month, randomized, double-blind, placebo-controlled study evaluating the ability of an extra-strength marine protein supplement to promote hair growth and decrease shedding in women with self-perceived thinning hair. Dermatology research and practice, 2015, 841570. https://doi.org/10.1155/2015/841570
20 Le Floc’h, C., Cheniti, A., Connétable, S., Piccardi, N., Vincenzi, C., & Tosti, A. (2015). Effect of a nutritional supplement on hair loss in women. Journal of cosmetic dermatology, 14(1), 76–82. https://doi.org/10.1111/jocd.12127
21 Kwon, Y. (2019). Use of saw palmetto (Serenoa repens) extract for benign prostatic hyperplasia. Food science and biotechnology, 28(6), 1599–1606. https://doi.org/10.1007/s10068-019-00605-9
22 Opoku-Acheampong, A. B., Penugonda, K., & Lindshield, B. L. (2016). Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth. Evidence-based complementary and alternative medicine: eCAM, 2016, 8135135. https://doi.org/10.1155/2016/8135135
23 Marks, L. S., Hess, D. L., Dorey, F. J., Luz Macairan, M., Cruz Santos, P. B., & Tyler, V. E. (2001). Tissue effects of saw palmetto and finasteride: use of biopsy cores for in situ quantification of prostatic androgens. Urology, 57(5), 999–1005. https://doi.org/10.1016/s0090-4295(00)01052-9
24 Cho, Y. H., Lee, S. Y., Jeong, D. W., Choi, E. J., Kim, Y. J., Lee, J. G., Yi, Y. H., & Cha, H. S. (2014). Effect of pumpkin seed oil on hair growth in men with androgenetic alopecia: a randomized, double-blind, placebo-controlled trial. Evidence-based complementary and alternative medicine: eCAM, 2014, 549721. https://doi.org/10.1155/2014/549721
25 Larré, S., Camparo, P., Comperat, E., Boulbés, D., Haddoum, M., Baulande, S., Soularue, P., Costa, P., & Cussenot, O. (2012). Biological effect of human serum collected before and after oral intake of Pygeum africanum on various benign prostate cell cultures. Asian journal of andrology, 14(3), 499–504. https://doi.org/10.1038/aja.2011.132
26 Auf’mkolk, M., Ingbar, J. C., Kubota, K., Amir, S. M., & Ingbar, S. H. (1985). Extracts and auto-oxidized constituents of certain plants inhibit the receptor-binding and the biological activity of Graves’ immunoglobulins. Endocrinology, 116(5), 1687–1693. https://doi.org/10.1210/endo-116-5-1687
27 Johnson, T. A., Sohn, J., Inman, W. D., Bjeldanes, L. F., & Rayburn, K. (2013). Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine: international journal of phytotherapy and phytopharmacology, 20(2), 143–147.
https://doi.org/10.1016/j.phymed.2012.09.016
28 Dong, J. Z., Lei, C., Ai, X. R., & Wang, Y. (2012). Selenium enrichment on Cordyceps militaris link and analysis on its main active components. Applied biochemistry and biotechnology, 166(5), 1215–1224. https://doi.org/10.1007/s12010-011-9506-6
29 Gärtner, R., Gasnier, B. C., Dietrich, J. W., Krebs, B., & Angstwurm, M. W. (2002). Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. The Journal of clinical endocrinology and metabolism, 87(4), 1687–1691. https://doi.org/10.1210/jcem.87.4.8421
30 Kaplan, D., & Dosiou, C. (2021). Two Cases of Graves’ Hyperthyroidism Treated with Homeopathic Remedies Containing Herbal Extracts from Lycopus spp. and Melissa officinalis. Journal of the Endocrine Society, 5(Suppl 1), A971. https://doi.org/10.1210/jendso/bvab048.1984
31 Palacio, C., Masri, G., & Mooradian, A. D. (2009). Black cohosh for the management of menopausal symptoms: a systematic review of clinical trials. Drugs & aging, 26(1), 23–36. https://doi.org/10.2165/0002512-200926010-00002
32 van Die, M. D., Burger, H. G., Teede, H. J., & Bone, K. M. (2013). Vitex agnus-castus extracts for female reproductive disorders: a systematic review of clinical trials. Planta medica, 79(7), 562–575. https://doi.org/10.1055/s-0032-1327831
33 Atteia, H. H., Alzahrani, S., El-Sherbeeny, N. A., Youssef, A. M., Farag, N. E., Mehanna, E. T., Elhawary, R., Ibrahim, G. A., Elmistekawy, A., & Zaitone, S. A. (2020). Evening Primrose Oil Ameliorates Hyperleptinemia and Reproductive Hormone Disturbances in Obese Female Rats: Impact on Estrus Cyclicity. Frontiers in endocrinology, 10, 942. https://doi.org/10.3389/fendo.2019.00942
34 Panahi, Y., Taghizadeh, M., Marzony, E. T., & Sahebkar, A. (2015). Rosemary oil vs minoxidil 2% for the treatment of androgenetic alopecia: a randomized comparative trial. Skinmed, 13(1), 15–21.
35 Wachtel-Galor S, Yuen J, Buswell JA, et al. Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 9. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92757/
36 Song, J., Wang, Y., Teng, M., Cai, G., Xu, H., Guo, H., Liu, Y., Wang, D., & Teng, L. (2015). Studies on the Antifatigue Activities of Cordyceps militaris Fruit Body Extract in Mouse Model. Evidence-based complementary and alternative medicine: eCAM, 2015, 174616. https://doi.org/10.1155/2015/174616
37 Benson, K. F., Stamets, P., Davis, R., Nally, R., Taylor, A., Slater, S., & Jensen, G. S. (2019). The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. BMC complementary and alternative medicine, 19(1), 342. https://doi.org/10.1186/s12906-019-2681-7
38 Medic, G., Wille, M., & Hemels, M. E. (2017). Short- and long-term health consequences of sleep disruption. Nature and science of sleep, 9, 151–161. https://doi.org/10.2147/NSS.S134864
39 Shinjyo, N., Waddell, G., & Green, J. (2020). Valerian Root in Treating Sleep Problems and Associated Disorders-A Systematic Review and Meta-Analysis. Journal of evidence-based integrative medicine, 25, 2515690X20967323. https://doi.org/10.1177/2515690X20967323
40 Elsas, S. M., Rossi, D. J., Raber, J., White, G., Seeley, C. A., Gregory, W. L., Mohr, C., Pfankuch, T., & Soumyanath, A. (2010). Passiflora incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo, varying with extraction method. Phytomedicine: international
journal of phytotherapy and phytopharmacology, 17(12), 940–949. https://doi.org/10.1016/j.phymed.2010.03.002
41 Scholey, A., Gibbs, A., Neale, C., Perry, N., Ossoukhova, A., Bilog, V., Kras, M., Scholz, C., Sass, M., & Buchwald-Werner, S. (2014). Anti-stress effects of lemon balm-containing foods. Nutrients, 6(11), 4805–4821. https://doi.org/10.3390/nu6114805
42 Harber, V. J., & Sutton, J. R. (1984). Endorphins and exercise. Sports medicine (Auckland, N.Z.), 1(2), 154–171. https://doi.org/10.2165/00007256-198401020-00004
43 Gawel, M. J., Park, D. M., Alaghband-Zadeh, J., & Rose, F. C. (1979). Exercise and hormonal secretion. Postgraduate medical journal, 55(644), 373–376. https://doi.org/10.1136/pgmj.55.644.373
44 Choi, J., Jun, M., Lee, S., Oh, S. S., & Lee, W. S. (2017). The Association between Exercise and Androgenetic Alopecia: A Survey-Based Study. Annals of dermatology, 29(4), 513–516. https://doi.org/10.5021/ad.2017.29.4.513
45 Droste, S. K., Gesing, A., Ulbricht, S., Müller, M. B., Linthorst, A. C., & Reul, J. M. (2003). Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenocortical axis. Endocrinology, 144(7), 3012–3023. https://doi.org/10.1210/en.2003-0097
46 Salmon P. (2001). Effects of physical exercise on anxiety, depression, and sensitivity to stress: a unifying theory. Clinical psychology review, 21(1), 33–61. https://doi.org/10.1016/s0272-7358(99)00032-x 363
47 Broman-Fulks, J. J., & Storey, K. M. (2008). Evaluation of a brief aerobic exercise intervention for high anxiety sensitivity. Anxiety, stress, and coping, 21(2), 117–128. https://doi.org/10.1080/10615800701762675
48 Smits, J. A., Berry, A. C., Rosenfield, D., Powers, M. B., Behar, E., & Otto, M. W. (2008). Reducing anxiety sensitivity with exercise. Depression and anxiety, 25(8), 689–699. https://doi.org/10.1002/da.20411
49 Ströhle, A., Graetz, B., Scheel, M., Wittmann, A., Feller, C., Heinz, A., & Dimeo, F. (2009). The acute antipanic and anxiolytic activity of aerobic exercise in patients with panic disorder and healthy control subjects. Journal of psychiatric research, 43(12), 1013–1017. https://doi.org/10.1016/j.jpsychires.2009.02.004
50 McWilliams, L. A., & Asmundson, G. J. (2001). Is there a negative association between anxiety sensitivity and arousal-increasing substances and activities?. Journal of anxiety disorders, 15(3), 161–170. https://doi.org/10.1016/s0887-6185(01)00056-1
51 Panahi Y, Taghizadeh M, Marzony ET, Sahebkar A. Rosemary oil vs minoxidil 2% for the treatment of androgenetic alopecia: a randomized comparative trial. Skinmed. 2015 Jan-Feb;13(1):15-21. PMID: 25842469. https://europepmc.org/article/med/25842469
52 Panahi, Y., Taghizadeh, M., Marzony, E. T., & Sahebkar, A. (2015). Rosemary oil vs minoxidil 2% for the treatment of androgenetic alopecia: a randomized comparative trial. Skinmed, 13(1), 15–21.
53 Gottumukkala, V. R., Annamalai, T., & Mukhopadhyay, T. (2011). Phytochemical investigation and hair growth studies on the rhizomes of Nardostachys jatamansi DC. Pharmacognosy magazine, 7(26), 146–150. https://doi.org/10.4103/09731296.80674
54 Araújo, L. A., Addor, F., & Campos, P. M. (2016). Use of silicon for skin and hair care: an approach of chemical forms available and efficacy. Anais brasileiros de dermatologia, 91(3), 331–335. https://doi.org/10.1590/abd1806-4841.20163986


Ch. 43: Hemorrhoids Protocol

1 Moesgaard, F., Nielsen, M. L., Hansen, J. B., & Knudsen, J. T. (1982). High-fiber diet reduces bleeding and pain in patients with hemorrhoids: a double-blind trial of Vi-Siblin. Diseases of the colon and rectum, 25(5), 454–456. https://doi.org/10.1007/BF02553653
2 Mott, T., Latimer, K., & Edwards, C. (2018). Hemorrhoids: Diagnosis and Treatment Options. American family physician, 97(3), 172–179
3 Perez-Miranda, M., Gomez-Cedenilla, A., León-Colombo, T., Pajares, J., & Mate-Jimenez, J. (1996). Effect of fiber supplements on internal bleeding hemorrhoids. Hepato-gastroenterology, 43(12), 1504–1507
4 Garg, P., & Singh, P. (2017). Adequate dietary fiber supplement and TONE can help avoid surgery in most patients with advanced hemorrhoids. Minerva gastroenterologica e dietologica, 63(2), 92–96. https://doi.org/10.23736/S1121-421X.17.02364-9
5 Sheikh, P., Lohsiriwat, V., & Shelygin, Y. (2020). Micronized Purified Flavonoid Fraction in Hemorrhoid Disease: A Systematic Review and Meta-Analysis. Advances in therapy, 37(6), 2792–2812. https://doi.org/10.1007/s12325-020-01353-7
6 Cospite M. (1994). Double-blind, placebo-controlled evaluation of clinical activity and safety of Daflon 500 mg in the treatment of acute hemorrhoids. Angiology, 45(6 Pt 2), 566–573
7 Corsale, I., Carrieri, P., Martellucci, J., Piccolomini, A., Verre, L., Rigutini, M., & Panicucci, S. (2018). Flavonoid mixture (diosmin, troxerutin, rutin, hesperidin, quercetin) in the treatment of I-III degree hemorroidal disease: a double-blind multicenter prospective comparative study. International journal of colorectal disease, 33(11), 1595–1600.
https://doi.org/10.1007/s00384-018-3102-y
8 Giannini, I., Amato, A., Basso, L., Tricomi, N., Marranci, M., Pecorella, G., Tafuri, S., Pennisi, D., & Altomare, D. F. (2015). Flavonoids mixture (diosmin, troxerutin, hesperidin) in the treatment of acute hemorrhoidal disease: a prospective, randomized, triple-blind, controlled trial. Techniques in coloproctology, 19(6), 339–345. https://doi.org/10.1007/s10151-015-1302-9
9 Annoni, F., Boccasanta, P., Chiurazzi, D., Mozzi, E., & Oberhauser, V. (1986). Trattamento dei sintomi acuti della malattia emorroidaria con O-(beta-idrossietil)-rutosidea ad alte dosi per via orale [Treatment of acute symptoms of hemorrhoid disease with high-dose oral O-(beta-hydroxyethyl)-rutosides]. Minerva medica, 77(37), 1663–1668.
10 Chiaretti, M., Fegatelli, D. A., Pappalardo, G., Venti, M., & Chiaretti, A. I. (2020). Comparison of Centella with Flavonoids for Treatment of Symptoms in Hemorrhoidal Disease and After Surgical Intervention: A Randomized Clinical Trial. Scientific reports, 10(1), 8009. https://doi.org/10.1038/s41598-020-64772-0
11 Gravina, A. G., Pellegrino, R., Facchiano, A., Palladino, G., Loguercio, C., & Federico, A. (2021). Evaluation of the Efficacy and Safety of a Compound of Micronized Flavonoids in Combination With Vitamin C and Extracts of Centella asiatica, Vaccinium myrtillus, and Vitis vinifera for the Reduction of Hemorrhoidal Symptoms in Patients With Grade II and
III Hemorrhoidal Disease: A Retrospective Real-Life Study. Frontiers in pharmacology, 12, 773320. https://doi.org/10.3389/fphar.2021.773320
12 Garg, P., & Singh, P. (2017). Adequate dietary fiber supplement and TONE can help avoid surgery in most patients with advanced hemorrhoids. Minerva gastroenterologica e dietologica, 63(2), 92–96. https://doi.org/10.23736/S1121-421X.17.02364-9
13 Kecmanović, D., Pavlov, M., Ceranić, M., Sepetkovski, A., Kovacević, P., Stamenković, A., Masirević, V., & Ranković, V. (2004). Plantago ovata (Laxomucil) posle hemoroidektomije [Plantago ovata (Laxomucil) after hemorrhoidectomy]. Acta chirurgica Iugoslavica, 51(3), 121–123. https://doi.org/10.2298/aci0403121k
14 Joksimovic, N., Spasovski, G., Joksimovic, V., Andreevski, V., Zuccari, C., & Omini, C. F. (2012). Efficacy and tolerability of hyaluronic acid, tea tree oil and methyl-sulfonyl-methane in a new gel medical device for treatment of haemorrhoids in a double-blind, placebo-controlled clinical trial. Updates in surgery, 64(3), 195–201. https://doi.org/10.1007/s13304-012-0153-4
15 Amaturo, A., Meucci, M., & Mari, F. S. (2020). Treatment of haemorrhoidal disease with micronized purified flavonoid fraction and sucralfate ointment. Acta bio-medica: Atenei Parmensis, 91(1), 139–141. https://doi.org/10.23750/abm.v91i1.9361
16 MacKay D. (2001). Hemorrhoids and varicose veins: a review of treatment options. Alternative medicine review: a journal of clinical therapeutic, 6(2), 126–140.
17 Ahad, H.A., Kumar, C.S., Reddy, K.K., Kranthi, G., Mahesh, K., Teja, K.S., & Kumar, M.T. (2010). Herbal Treatment for Hemorrhoids. Journal of Innovative Trends in Pharmaceutical Sciences. 1(5): 236-244
18 Bylka, W., & Kornobis, J. (2005). Ruszczyk kolczasty, w leczeniu chorób naczyń zylnych [Butcher’s Broom, in the treatment of venous insufficiency]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego, 19(110), 234–236.
19 MacKay D. (2001). Hemorrhoids and varicose veins: a review of treatment options. Alternative medicine review: a journal of clinical therapeutic, 6(2), 126–140.
20 Chiaretti, M., Fegatelli, D. A., Pappalardo, G., Venti, M., & Chiaretti, A. I. (2020). Comparison of Centella with Flavonoids for Treatment of Symptoms in Hemorrhoidal Disease and After Surgical Intervention: A Randomized Clinical Trial. Scientific reports, 10(1), 8009. https://doi.org/10.1038/s41598-020-64772-0
21 Senatore, F., Mścisz, A., Mrugasiewicz, K., & Gorecki, P. (1989). Steroidal constituents and anti-inflammatory activity of the horse chestnut (Aesculus hippocastanum L.) bark. Bollettino della Societa italiana di biologia sperimentale, 65(2), 137-141.
22 Suter, A., Bommer, S., & Rechner, J. (2006). Treatment of patients with venous insufficiency with fresh plant horse chestnut seed extract: a review of 5 clinical studies. Advances in therapy, 23(1), 179–190. https://doi.org/10.1007/BF02850359
23 Sirtori C. R. (2001). Aescin: pharmacology, pharmacokinetics and therapeutic profile. Pharmacological research, 44(3), 183–193. https://doi.org/10.1006/phrs.2001.0847
24 Gravina, A. G., Pellegrino, R., Facchiano, A., Palladino, G., Loguercio, C., & Federico, A. (2021). Evaluation of the Efficacy and Safety of a Compound of Micronized Flavonoids in Combination With Vitamin C and Extracts of Centella asiatica, Vaccinium myrtillus, and Vitis vinifera for the Reduction of Hemorrhoidal Symptoms in Patients With Grade II and
III Hemorrhoidal Disease: A Retrospective Real-Life Study. Frontiers in pharmacology, 12, 773320. https://doi.org/10.3389/fphar.2021.773320
25 Mahboubi M. (2017). Effectiveness of Myrtus communis in the treatment of hemorrhoids. Journal of integrative medicine, 15(5), 351–358. https://doi.org/10.1016/S2095-4964(17)60340-6
26 Panahi, Y., Mousavi‐Nayeeni, S.M., Sahebkar, A., Rahimnia, A., Beiraghdar, F., Sol‐Tanbakhsh, M., Imani, S. (2014). Myrtus communis essential oil for the treatment of hemorrhoids: a randomized double-blind double-dummy parallel-group comparative study. Turkish journal of pharmaceutical sciences, 11(1):1‐8
27 Neamsuvan, O., & Ruangrit, T. (2017). A survey of herbal weeds that are used to treat gastrointestinal disorders from southern Thailand: Krabi and Songkhla provinces. Journal of ethnopharmacology, 196, 84–93. https://doi.org/10.1016/j.jep.2016.11.033
28 Romm, A. (2017). Botanical medicine for Women’s health E-book. Elsevier Health Sciences.
29 InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. Enlarged hemorrhoids: How can you relieve the symptoms yourself? 2014 Jan 29 [Updated 2017 Nov 2]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279466/
30 Akram M. (2013). Minireview on Achillea millefolium Linn. The Journal of membrane biology, 246(9), 661–663. https://doi.org/10.1007/s00232-013-9588-x
31 Hashempur, M. H., Khademi, F., Rahmanifard, M., & Zarshenas, M. M. (2017). An Evidence-Based Study on Medicinal Plants for Hemorrhoids in Medieval Persia. Journal of evidence-based complementary & alternative medicine, 22(4), 969–981. https://doi.org/10.1177/2156587216688597
32 Shafik A. (1993). Role of warm-water bath in anorectal conditions. The “thermosphincteric reflex”. Journal of clinical gastroenterology, 16(4), 304–308. https://doi.org/10.1097/00004836-199306000-00007


Ch. 44: Sleep Protocol

1 Kanagasabai, T., & Ardern, C. I. (2015). Contribution of Inflammation, Oxidative Stress, and Antioxidants to the Relationship between Sleep Duration and Cardiometabolic Health. Sleep, 38(12), 1905–1912. https://doi.org/10.5665/sleep.5238
2 Rasch, B., & Born, J. (2013). About sleep’s role in memory. Physiological reviews, 93(2), 681–766. https://doi.org/10.1152/physrev.00032.2012
3 Pauers, M. J., Kuchenbecker, J. A., Neitz, M., & Neitz, J. (2012). Changes in the colour of light cue circadian activity. Animal behaviour, 83(5), 1143–1151. https://doi.org/10.1016/j.anbehav.2012.01.035
4 University of Washington Health Sciences/UW Medicine. (2020, February 20). Let there be ‘circadian’ light: New study describes science behind best lights to affect sleep, mood and learning. ScienceDaily. Retrieved September 4, 2022 from www.sciencedaily.com/releases/2020/02/200220141731.htm
5 Taranto-Montemurro, L., Messineo, L., Sands, S., Azarbarzin, A., Marques, M., & Wellman, A. (2017). 0394 Effect of background noise on sleep quality. Sleep, 40(suppl_1): A146–A147, https://doi.org/10.1093/sleepj/zsx050.393
6 Lunsford-Avery, J.R., Engelhard, M.M., Navar, A.M., & Kollins, S.H. (2018). Validation of the Sleep Regularity Index in Older Adults and Associations with Cardiometabolic Risk. Scientific Reports. 8:14158. https://doi.org/10.1038/s41598-018-32402-5
7 Wehrens, S., Christou, S., Isherwood, C., Middleton, B., Gibbs, M. A., Archer, S. N., Skene, D. J., & Johnston, J. D. (2017). Meal Timing Regulates the Human Circadian System. Current biology: CB, 27(12), 1768–1775.e3. https://doi.org/10.1016/j.cub.2017.04.059
8 Rubio-Arias, J. Á., Marín-Cascales, E., Ramos-Campo, D. J., Hernandez, A. V., & Pérez-Lópe, F. R. (2017). Effect of exercise on sleep quality and insomnia in middle-aged women: A systematic review and meta-analysis of randomized controlled trials. Maturitas, 364 100, 49–56. https://doi.org/10.1016/j.maturitas.2017.04.003
9 Siu, P. M., Yu, A. P., Tam, B. T., Chin, E. C., Yu, D. S., Chung, K. F., Hui, S. S., Woo, J., Fong, D. Y., Lee, P. H., Wei, G. X., & Irwin, M. R. (2021). Effects of Tai Chi or Exercise on Sleep in Older Adults With Insomnia: A Randomized Clinical Trial. JAMA network open, 4(2), e2037199. https://doi.org/10.1001/jamanetworkopen.2020.37199
10 D’Aurea, C., Poyares, D., Passos, G. S., Santana, M. G., Youngstedt, S. D., Souza, A. A., Bicudo, J., Tufik, S., & de Mello, M. T. (2019). Effects of resistance exercise training and stretching on chronic insomnia. Revista brasileira de psiquiatria (Sao Paulo, Brazil: 1999), 41(1), 51–57. https://doi.org/10.1590/1516-4446-2018-0030
11 Reid, K. J., Baron, K. G., Lu, B., Naylor, E., Wolfe, L., & Zee, P. C. (2010). Aerobic exercise improves self-reported sleep and quality of life in older adults with insomnia. Sleep medicine, 11(9), 934–940. https://doi.org/10.1016/j.sleep.2010.04.014
12 Lindahl, O., & Lindwall, L. (1989). Double blind study of a valerian preparation. Pharmacology, biochemistry, and behavior, 32(4), 1065–1066. https://doi.org/10.1016/0091-3057(89)90082-8
13 Salter, S., & Brownie, S. (2010). Treating primary insomnia - the efficacy of valerian and hops. Australian family physician, 39(6), 433–437.
14 https://thesleepdoctor.com/sleep-aids/
15 Abdellah, S. A., Berlin, A., Blondeau, C., Guinobert, I., Guilbot, A., Beck, M., & Duforez, F. (2019). A combination of Eschscholtzia californica Cham. and Valeriana officinalis L. extracts for adjustment insomnia: A prospective observational study. Journal of traditional and complementary medicine, 10(2), 116–123. https://doi.org/10.1016/j.jtcme.2019.02.003
16 Abdullahzadeh, M., Matourypour, P., & Naji, S. A. (2017). Investigation effect of oral chamomilla on sleep quality in elderly people in Isfahan: A randomized control trial. Journal of education and health promotion, 6, 53. https://doi.org/10.4103/jehp.jehp_109_15
17 Ngan, A., & Conduit, R. (2011). A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality. Phytotherapy research: PTR, 25(8), 1153–1159. https://doi.org/10.1002/ptr.3400
18 Maroo, N., Hazra, A., & Das, T. (2013). Efficacy and safety of a polyherbal sedative-hypnotic formulation NSF-3 in primary insomnia in comparison to zolpidem: a randomized controlled trial. Indian journal of pharmacology, 45(1), 34–39. https://doi.org/10.4103/0253-7613.106432
19 Sarris, J., Panossian, A., Schweitzer, I., Stough, C., & Scholey, A. (2011). Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology, 21(12), 841–860. https://doi.org/10.1016/j.euroneuro.2011.04.002
20 Savage, K., Firth, J., Stough, C., & Sarris, J. (2018). GABA-modulating phytomedicines for anxiety: A systematic review of preclinical and clinical evidence. Phytotherapy research: PTR, 32(1), 3–18. https://doi.org/10.1002/ptr.5940
21 Cases, J., Ibarra, A., Feuillère, N., Roller, M., & Sukkar, S. G. (2011). Pilot trial of Melissa officinalis L. leaf extract in the treatment of volunteers suffering from mild-to-moderate anxiety disorders and sleep disturbances. Mediterranean journal of nutrition and metabolism, 4(3), 211–218. https://doi.org/10.1007/s12349-010-0045-4
22 Ranjbar, M., Firoozabadi, A., Salehi, A., Ghorbanifar, Z., Zarshenas, M. M., Sadeghniiat-Haghighi, K., & Rezaeizadeh, H. (2018). Effects of Herbal combination (Melissa officinalis L. and Nepeta menthoides Boiss. & Buhse) on insomnia severity, anxiety and depression in insomniacs: Randomized placebo controlled trial. Integrative medicine research, 7(4), 328–332. https://doi.org/10.1016/j.imr.2018.08.001
23 Yao, C., Wang, Z., Jiang, H., Yan, R., Huang, Q., Wang, Y., Xie, H., Zou, Y., Yu, Y., & Lv, L. (2021). Ganoderma lucidum promotes sleep through a gut microbiota-dependent and serotonin-involved pathway in mice. Scientific reports, 11(1), 13660. https://doi.org/10.1038/s41598-021-92913-6
24 Shergis, J. L., Hyde, A., Meaklim, H., Varma, P., Da Costa, C., & Jackson, M. L. (2021). Medicinal seeds Ziziphus spinosa for insomnia: A randomized, placebo-controlled, crossover, feasibility clinical trial. Complementary therapies in medicine, 57, 102657. https://doi.org/10.1016/j.ctim.2020.102657
25 Cao, Y., Zhen, S., Taylor, A. W., Appleton, S., Atlantis, E., & Shi, Z. (2018). Magnesium Intake and Sleep Disorder Symptoms: Findings from the Jiangsu Nutrition Study of Chinese Adults at Five-Year Follow-Up. Nutrients, 10(10), 1354. https://doi.org/10.3390/nu10101354
26 Abbasi, B., Kimiagar, M., Sadeghniiat, K., Shirazi, M. M., Hedayati, M., & Rashidkhani, B. (2012). The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 17(12), 1161–1169.
27 Mah, J., & Pitre, T. (2021). Oral magnesium supplementation for insomnia in older adults: a Systematic Review & Meta-Analysis. BMC complementary medicine and therapies, 21(1), 125. https://doi.org/10.1186/s12906-021-03297-z
28 Gandolfi, J. V., Di Bernardo, A., Chanes, D., Martin, D. F., Joles, V. B., Amendola, C. P., Sanches, L. C., Ciorlia, G. L., & Lobo, S. M. (2020). The Effects of Melatonin Supplementation on Sleep Quality and Assessment of the Serum Melatonin in ICU Patients: A Randomized Controlled Trial. Critical care medicine, 48(12), e1286–e1293. https://doi.org/10.1097/CCM.0000000000004690
29 Janjua, I., & Goldman, R. D. (2016). Sleep-related melatonin use in healthy children. Canadian family physician Medecin de famille canadien, 62(4), 315–317.
30 Riha R. L. (2018). The use and misuse of exogenous melatonin in the treatment of sleep disorders. Current opinion in pulmonary medicine, 24(6), 543–548. https://doi.org/10.1097/MCP.0000000000000522
31 Urrila, A. S., Hakkarainen, A., Castaneda, A., Paunio, T., Marttunen, M., & Lundbom, N. (2017). Frontal Cortex Myo-Inositol Is Associated with Sleep and Depression in Adolescents: A Proton Magnetic Resonance Spectroscopy Study. Neuropsychobiology, 75(1), 21–31. https://doi.org/10.1159/000478861
32 Mashayekh-Amiri, S., Delavar, M. A., Bakouei, F., Faramarzi, M., & Esmaeilzadeh, S. (2022). The impact of myo-inositol supplementation on sleep quality in pregnant women: a randomized, double-blind, placebo-controlled study. The journal of maternal-fetal & neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 35(18), 3415–3423. https://doi.org/10.1080/14767058.2020.1818225
33 Kanagasabai, T., & Ardern, C. I. (2015). Contribution of Inflammation, Oxidative Stress, and Antioxidants to the Relationship between Sleep Duration and Cardiometabolic Health. Sleep, 38(12), 1905–1912. https://doi.org/10.5665/sleep.5238
34 Otocka-Kmiecik, A., & Król, A. (2020). The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep. Nutrients, 12(12), 3908. https://doi.org/10.3390/nu12123908
35 Grandner, M. A., Jackson, N., Gerstner, J. R., & Knutson, K. L. (2014). Sleep symptoms associated with intake of specific dietary nutrients. Journal of sleep research, 23(1), 22–34. https://doi.org/10.1111/jsr.12084
36 Takahashi H., Mizuno H., Yanagisawa A. High-dose intravenous vitamin C improves quality of life in cancer patients. Pers. Med. Universe. 2012;1: 49–53. doi: 10.1016/j.pmu.2012.05.008.
37 Aspy, D. J., Madden, N. A., & Delfabbro, P. (2018). Effects of Vitamin B6 (Pyridoxine) and a B Complex Preparation on Dreaming and Sleep. Perceptual and motor skills, 125(3), 451–462. https://doi.org/10.1177/0031512518770326
38 Bravaccio, C., Terrone, G., Rizzo, R., Gulisano, M., Tosi, M., Curatolo, P., & Emberti Gialloreti, L. (2020). Use of nutritional supplements based on melatonin, tryptophan and vitamin B6 (Melamil Tripto®) in children with primary chronic headache, with or without sleep disorders: a pilot study. Minerva pediatrica, 72(1), 30–36. https://doi.org/10.23736/S0026-4946.19.05533-6
39 Djokic, G., Vojvodić, P., Korcok, D., Agic, A., Rankovic, A., Djordjevic, V., Vojvodic, A., Vlaskovic-Jovicevic, T., Peric-Hajzler, Z., Matovic, D., Vojvodic, J., Sijan, G., Wollina, U., Tirant, M., Thuong, N. V., Fioranelli, M., & Lotti, T. (2019). The Effects of Magnesium - Melatonin - Vit B Complex Supplementation in Treatment of Insomnia. Open access
Macedonian journal of medical sciences, 7(18), 3101–3105. https://doi.org/10.3889/oamjms.2019.771
40 Kim, S., Jo, K., Hong, K. B., Han, S. H., & Suh, H. J. (2019). GABA and l-theanine mixture decreases sleep latency and improves NREM sleep. Pharmaceutical biology, 57(1), 65–73. https://doi.org/10.1080/13880209.2018.1557698
41 Bravaccio, C., Terrone, G., Rizzo, R., Gulisano, M., Tosi, M., Curatolo, P., & Emberti Gialloreti, L. (2020). Use of nutritional supplements based on melatonin, tryptophan and vitamin B6 (Melamil Tripto®) in children with primary chronic headache, with or without sleep disorders: a pilot study. Minerva pediatrica, 72(1), 30–36. https://doi.org/10.23736/S0026-4946.19.05533-6
42 Shannon, S., Lewis, N., Lee, H., & Hughes, S. (2019). Cannabidiol in Anxiety and Sleep: A Large Case Series. The Permanente journal, 23, 18–041. https://doi.org/10.7812/TPP/18-041
43 Dos Reis Lucena, L., Dos Santos-Junior, J. G., Tufik, S., & Hachul, H. (2021). Lavender essential oil on postmenopausal women with insomnia: Double-blind randomized trial. Complementary therapies in medicine, 59, 102726. https://doi.org/10.1016/j.ctim.2021.102726
44 Nasiri Lari, Z., Hajimonfarednejad, M., Riasatian, M., Abolhassanzadeh, Z., Iraji, A., Vojoud, M., Heydari, M., & Shams, M. (2020). Efficacy of inhaled Lavandula angustifolia Mill. Essential oil on sleep quality, quality of life and metabolic control in patients with diabetes mellitus type II and insomnia. Journal of ethnopharmacology, 251, 112560.
https://doi.org/10.1016/j.jep.2020.112560
45 Zhong, Y., Zheng, Q., Hu, P., Huang, X., Yang, M., Ren, G., Du, Q., Luo, J., Zhang, K., Li, J., Wu, H., Guo, Y., & Liu, S. (2019). Sedative and hypnotic effects of compound Anshen essential oil inhalation for insomnia. BMC complementary and alternative medicine, 19(1), 306. https://doi.org/10.1186/s12906-019-2732-0
46 Ebbens, M. M., & Verster, J. C. (2010). Clinical evaluation of zaleplon in the treatment of insomnia. Nature and science of sleep, 2, 115–126. https://doi.org/10.2147/nss.s6853
47 Dang, A., Garg, A., & Rataboli, P. V. (2011). Role of zolpidem in the management of insomnia. CNS neuroscience & therapeutics, 17(5), 387–397. https://doi.org/10.1111/j.1755-5949.2010.00158.x


Ch. 45: Weight Loss Protocol

1 Ranade, Manjiri, and Nikhil Mudgalkar. “A simple dietary addition of fenugreek seed leads to the reduction in blood glucose levels: A parallel group, randomized single-blind trial.” Ayu vol. 38,1-2 (2017): 24-27. doi:10.4103/ayu.AYU_209_15 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954247/
2 Mathern, Jocelyn R et al. “Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects.” Phytotherapy research: PTR vol. 23,11 (2009): 1543-8. doi:10.1002/ptr.2795 https://pubmed.ncbi.nlm.nih.gov/19353539/#
3 Bae, JiYoung et al. “Fennel (Foeniculum vulgare) and Fenugreek (Trigonella foenum-graecum) Tea Drinking Suppresses Subjective Short-term Appetite in Overweight Women.” Clinical nutrition research vol. 4,3 (2015): 168-74. doi:10.7762/cnr.2015.4.3.168 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525133/
4 Chevassus, Hugues et al. “A fenugreek seed extract selectively reduces spontaneous fat consumption in healthy volunteers.” European journal of clinical pharmacology vol. 65,12 (2009): 1175-8. doi:10.1007/s00228-009-0733-5 https://pubmed.ncbi.nlm.nih.gov/19809809/
5 Hiwatashi K, Kosaka Y, Suzuki N, Hata K, Mukaiyama T, Sakamoto K, Shirakawa H, Komai M. Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet. Biosci Biotechnol Biochem. 2010;74(7):1447-51
6 Chen Diling, Guo Yinrui, Qi Longkai, Tang Xiaocui, Liu Yadi, Feng Jiaxin, Zhu Xiangxiang, Zeng Miao, Shuai Ou, Wang Dongdong, Xie Yizhen, Burton B. Yang, 365 Wu Qingping. Metabolic regulation of Ganoderma lucidum extracts in high sugar and fat diet-induced obese mice by regulating the gut-brain axis. Journal of Functional Foods. 2020,65:103639
7 Gao, Yihuai & Lan, Jin & Dai, Xihu & Ye, Jingxian & Zhou, Shufeng. A Phase I/II Study of Ling Zhi Mushroom Ganoderma lucidum (W.Curt.:Fr.)Lloyd (Aphyllophoromycetideae) Extract in Patients with Type II Diabetes Mellitus. International Journal of Medicinal Mushrooms. 2004;6. 33-40
8 Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, Tseng SF, Wu TR, Chen YY, Young JD, Lai HC. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015 Jun 23;6:7489. doi: 10.1038/ncomms8489. Erratum in: Nat Commun. 2017 Jul 11;8:16130. PMID: 26102296; PMCID: PMC4557287
9 Verpeut, Jessica L et al. “Citrus aurantium and Rhodiola rosea in combination reduce visceral white adipose tissue and increase hypothalamic norepinephrine in a rat model of diet-induced obesity.” Nutrition research (New York, N.Y.) vol. 33,6 (2013): 503-12. doi:10.1016/j.nutres.2013.04.001
10 Panossian, Alexander et al. “The adaptogens rhodiola and schizandra modify the response to immobilization stress in rabbits by suppressing the increase of phosphorylated stress-activated protein kinase, nitric oxide and cortisol.” Drug target insights vol. 2 (2007): 39-54. https://pubmed.ncbi.nlm.nih.gov/21901061/
11 https://www.healthline.com/health-news/interval-workouts-will-help-you-loseweight-more-quickly
12 Sharma S, Agrawal RP, Choudhary M, Jain S, Goyal S, Agarwal V. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol. 2011;25(3):149-153. doi:10.1016/j.jtemb.2011.03.003
13 Pattar GR, Tackett L, Liu P, Elmendorf JS. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutat Res. 2006;610(1-2):93-100. doi:10.1016/j.mrgentox.2006.06.018
14 Askari, M., Mozaffari, H., Jafari, A., Ghanbari, M., & Darooghegi Mofrad, M. (2021). The effects of magnesium supplementation on obesity measures in adults: a systematic review and dose-response meta-analysis of randomized controlled trials. Critical reviews in food science and nutrition, 61(17), 2921–2937. https://doi.org/10.1080/10408398.
2020.1790498
15 Sharma VK, Trakroo M, Subramaniam V, Rajajeyakumar M, Bhavanani AB, Sahai A. Effect of fast and slow pranayama on perceived stress and cardiovascular parameters in young health-care students. Int J Yoga. 2013 Jul;6(2):104-10. doi: 10.4103/0973-6131.113400. PMID: 23930028; PMCID: PMC3734635
16 https://chopra.com/articles/release-toxins-with-kapalabhati-breath


Ch. 46: Anti-Inflammatory Diet

1 Yates, T., Khunti, K., Wilmot, E. G., Brady, E., Webb, D., Srinivasan, B., Henson, J., Talbot, D., & Davies, M. J. (2012). Self-reported sitting time and markers of inflammation, insulin resistance, and adiposity. American Journal of Preventive Medicine, 42(1), 1–7. https://doi.org/10.1016/j.amepre.2011.09.022
2 Ries, J. (2021, November 10). An anti-inflammatory diet high may decrease your dementia risk. Healthline. Retrieved June 2, 2022, from https://t.ly/3RWS
3 Tedeschi, S. K., Frits, M., Cui, J., Zhang, Z. Z., Mahmoud, T., Iannaccone, C., Lin, T. C., Yoshida, K., Weinblatt, M. E., Shadick, N. A., & Solomon, D. H. (2017). Diet and Rheumatoid Arthritis Symptoms: Survey Results from a Rheumatoid Arthritis Registry. Arthritis care & research, 69(12), 1920–1925. https://doi.org/10.1002/acr.23225
4 Pedersen B. K. (2006). The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays in biochemistry, 42, 105–117. https://doi.org/10.1042/bse0420105
5 Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322
6 Kolb, H., & Mandrup-Poulsen, T. (2010). The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia, 53(1), 10–20. https://doi.org/10.1007/s00125-009-1573-7 Tilg, H., & Moschen, A. R. (2010). Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology (Baltimore, Md.), 52(5), 1836–1846. https://doi.org/10.1002/hep.24001
7 Kaluza, J., Håkansson, N., Harris, H. R., Orsini, N., Michaëlsson, K., & Wolk, A. (2019). Influence of anti-inflammatory diet and smoking on mortality and survival in men and women: two prospective cohort studies. Journal of internal medicine, 285(1), 75–91. https://doi.org/10.1111/joim.12823
8 Szeto, Y. T., Kwok, T. C., & Benzie, I. F. (2004). Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition (Burbank, Los Angeles County, Calif.), 20(10), 863–866. https://doi.org/10.1016/j.nut.2004.06.006
9 Casas, R., Sacanella, E., Urpí-Sardà, M., Chiva-Blanch, G., Ros, E., Martínez-González, M. A., Covas, M. I., Rosa Ma Lamuela-Raventos, Salas-Salvadó, J., Fiol, M., Arós, F., & Estruch, R. (2014). The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PloS one, 9(6), e100084. https://doi.org/10.1371/journal.pone.0100084
10 Zhong, Z., Wheeler, M. D., Li, X., Froh, M., Schemmer, P., Yin, M., Bunzendaul, H., Bradford, B., & Lemasters, J. J. (2003). L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Current opinion in clinical nutrition and metabolic care, 6(2), 229–240. https://doi.org/10.1097/00075197-200303000-00013
11 Hasegawa S, Ichiyama T, Sonaka I, Ohsaki A, Okada S, Wakiguchi H, Kudo K, Kittaka S, Hara M, Furukawa S. Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin Exp Immunol.
2012 Feb;167(2):269-74. doi: 10.1111/j.1365-2249.2011.04519.x. PMID: 22236003; PMCID: PMC3278693
12 Hochberg, M. C., Martel-Pelletier, J., Monfort, J., Möller, I., Castillo, J. R., Arden, N., Berenbaum, F., Blanco, F. J., Conaghan, P. G., Doménech, G., Henrotin, Y., Pap, T., Richette, P., Sawitzke, A., du Souich, P., Pelletier, J. P., & MOVES Investigation Group (2016). Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Annals of the rheumatic diseases, 75(1), 37–44. https://doi.org/10.1136/annrheumdis-2014-206792
13 De Stefanis, D., Mastrocola, R., Nigro, D., Costelli, P., & Aragno, M. (2015). Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle. European Journal of Nutrition, 56(1), 363–373. https://doi.org/10.1007/s00394-015-1086-8
14 Hammerling, U., Bergman Laurila, J., Grafström, R., & Ilbäck, N. G. (2016). Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Critical reviews in food science and nutrition, 56(4), 614–634. https://doi.org/10.1080/10408398.2014.972498
15 Stanhope, K. L., & Havel, P. J. (2009). Fructose consumption: considerations for future research on its effects on adipose distribution, lipid metabolism, and insulin sensitivity in humans. The Journal of nutrition, 139(6), 1236S–1241S. https://doi.org/10.3945/jn.109.106641
16 Nestel, P. (2014). Trans fatty acids: Are its cardiovascular risks fully appreciated? Clinical Therapeutics, 36(3), 315–321. https://doi.org/10.1016/j.clinthera.2014.01.020
17 Do dietary lectins cause disease? The evidence is suggestive—and raises interesting possibilities for treatment, David L J Freed, Allergist, BMJ. 1999 Apr 17; 318(7190): 1023–1024. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1115436/
18 Gundry, S. R. (2020). Abstract P219: The Vast Majority of People Who Eat “Gluten Free” for IBS, Celiac, or Autoimmune Disease Have Markers of Leaky Gut That Resolve When “Gluten Free” Foods Containing Lectins, Like Corn, Other Grains, Beans, and Nightshades are Removed from Their Diet. Circulation, 141(Suppl_1), AP219-AP219
19 Wahls, T. L., Chenard, C. A., & Snetselaar, L. G. (2019). Review of two popular eating plans within the multiple sclerosis community: low saturated fat and modified paleolithic. Nutrients, 11(2), 352
20 Mullington, J. M., Simpson, N. S., Meier-Ewert, H. K., & Haack, M. (2010). Sleep loss and inflammation. Best practice & research. Clinical endocrinology & metabolism, 24(5), 775–784. https://doi.org/10.1016/j.beem.2010.08.014
21 Pedersen B. K. (2006). The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays in biochemistry, 42, 105–117. https://doi.org/10.1042/bse0420105
22 Yan Q. (2018). Stress and Systemic Inflammation: Yin-Yang Dynamics in Health and Diseases. Methods in molecular biology (Clifton, N.J.), 1781, 3–20. https://doi.org/10.1007/978-1-4939-7828-1_1


Ch. 47: Elimination Diet

1 Wood, R. A. (2015). Diagnostic elimination diets and oral food provocation. Food Allergy: Molecular Basis and Clinical Practice, 87–95. https://doi.org/10.1159/000371680
2 Tuck, C. J., Biesiekierski, J. R., Schmid-Grendelmeier, P., & Pohl, D. (2019). Food intolerances. Nutrients, 11(7), 1684. https://doi.org/10.3390/nu11071684
3 Adam Rindfleisch, J. (2012). Food intolerance and elimination diet. Integrative Medicine. https://doi.org/10.1016/b978-1-4377-1793-8.00068-6
4 Raman, R. (2017, July 2). How to do an elimination diet and why. Healthline. Retrieved September 6, 2022, from https://www.healthline.com/nutrition/elimination-diet#TOC_TITLE_HDR_2
5 Swain, A. R., Soutter, V. L., & Loblay, R. H. (2011). Rpah Elimination Diet Handbook: With Food & Shopping Guide. Allergy Unit, Royal Prince Alfred Hospital
6 Kanagaratham, C., El Ansari, Y. S., Lewis, O. L., & Oettgen, H. C. (2020). IGE and IGG antibodies as regulators of mast cell and Basophil functions in food allergy. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.603050
7 Tuck, C. J., Biesiekierski, J. R., Schmid-Grendelmeier, P., & Pohl, D. (2019). Food intolerances. Nutrients, 11(7), 1684. https://doi.org/10.3390/nu11071684
8 Jenkins, & Vickers. (1998). Unreliability of IGE/igg4 antibody testing as a diagnostic tool in food intolerance. Clinical & Experimental Allergy, 28(12), 1526–1529. https://doi.org/10.1046/j.1365-2222.1998.00367.x
9 Atkinson, W. (2004). Food elimination based on IGG antibodies in irritable bowel syndrome: A randomised controlled trial. Gut, 53(10), 1459–1464. https://doi.org/10.1136/gut.2003.037697
10 Syrigou, E., Angelakopoulou, A., Zande, M., Panagiotou, I., Roma, E., & Pitsios, C. (2015). Allergy-test-driven elimination diet is useful in children with eosinophilic esophagitis, regardless of the severity of symptoms. Pediatric Allergy and Immunology, 26(4), 323–329. https://doi.org/10.1111/pai.12389
11 Dhar, S., & Srinivas, S. M. (2016). Food allergy in atopic dermatitis. Indian Journal of Dermatology, 61(6), 645. https://doi.org/10.4103/0019-5154.193673
12 Nigg, J. T., & Holton, K. (2014). Restriction and elimination diets in ADHD treatment. Child and Adolescent Psychiatric Clinics of North America, 23(4), 937–953. https://doi.org/10.1016/j.chc.2014.05.010
13 Alpay, K., Ertaş, M., Orhan, E. K., Üstay, D. K., Lieners, C., & Baykan, B. (2010). Diet restriction in migraine, based on IGG against foods: A clinical double-blind, randomised, cross-over trial. Cephalalgia, 30(7), 829–837. https://doi.
org/10.1177/0333102410361404
14 Stamp, L. K., James, M. J., & Cleland, L. G. (2005). Diet and rheumatoid arthritis: A review of the literature. Seminars in Arthritis and Rheumatism, 35(2), 77–94. https://doi.366 org/10.1016/j.semarthrit.2005.05.001
15 Elimination diet - veterans affairs. (n.d.). Retrieved September 7, 2022, from https://www.va.gov/WHOLEHEALTHLIBRARY/docs/Elimination-Diet.pdf
16 Swain, A. R., Soutter, V. L., & Loblay, R. H. (2011). Rpah Elimination Diet Handbook: With Food & Shopping Guide. Allergy Unit, Royal Prince Alfred Hospital.
17 Raman, R. (2017, July 2). How to do an elimination diet and why. Healthline. Retrieved September 7, 2022, from https://www.healthline.com/nutrition/elimination-diet#TOC_TITLE_HDR_5
18 Rakel, D. (2018). Chapter 86, “The Elimination Diet.” In Integrative medicine (4th ed), Elsevier
19 MediLexicon International. (n.d.). Food intolerance: Causes, types, symptoms, and diagnosis. Medical News Today. Retrieved September 7, 2022, from https://www.medicalnewstoday.com/articles/263965
20 Mitchell, N., Hewitt, C. E., Jayakody, S., Islam, M., Adamson, J., Watt, I., & Torgerson, D. J. (2011). Randomised controlled trial of food elimination diet based on IGG antibodies for the prevention of migraine like headaches. Nutrition Journal, 10(1). https://doi.org/10.1186/1475-2891-10-85


Ch. 48: Intermittent Fasting

1 Patterson RE, Laughlin GA, LaCroix AZ, Hartman SJ, Natarajan L, Senger CM, Martínez ME, Villaseñor A, Sears DD, Marinac CR, Gallo LC. Intermittent Fasting and Human Metabolic Health. J Acad Nutr Diet. 2015 Aug;115(8):1203-12. doi: 10.1016/j.jand.2015.02.018. Epub 2015 Apr 6. PMID: 25857868; PMCID: PMC4516560
2 Kim BH, Joo Y, Kim MS, Choe HK, Tong Q, Kwon O. Effects of Intermittent Fasting on the Circulating Levels and Circadian Rhythms of Hormones. Endocrinol Metab (Seoul). 2021 Aug;36(4):745-756. doi: 10.3803/EnM.2021.405. Epub 2021 Aug 27. PMID: 34474513; PMCID: PMC8419605
3 de Cabo, R., & Mattson, M. P. (2019). Effects of Intermittent Fasting on Health, Aging, and Disease. The New England journal of medicine, 381(26), 2541–2551. https://doi.org/10.1056/NEJMra1905136 https://pubmed.ncbi.nlm.nih.gov/31881139/
4 Dong TA, Sandesara PB, Dhindsa DS, Mehta A, Arneson LC, Dollar AL, Taub PR, Sperling LS. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am J Med. 2020 Aug;133(8):901-907. doi: 10.1016/j.amjmed.2020.03.030. Epub 2020 Apr 21. PMID:
32330491; PMCID: PMC7415631
5 Chen Y, Su J, Yan Y, Zhao Q, Ma J, Zhu M, He X, Zhang B, Xu H, Yang X, Duan Y, Han J. Intermittent Fasting Inhibits High-Fat Diet-Induced Atherosclerosis by Ameliorating Hypercholesterolemia and Reducing Monocyte Chemoattraction. Front Pharmacol. 2021 Sep 30;12:719750. doi: 10.3389/fphar.2021.719750. PMID: 34658858; PMCID: PMC8517704
6 Mattson, M. P., Longo, V. D., & Harvie, M. (2017). Impact of intermittent fasting on health and disease processes. Ageing research reviews, 39, 46–58. https://doi.org/10.1016/j.arr.2016.10.005
7 Cheng CW, Adams GB, Perin L, Wei M, Zhou X, Lam BS, Da Sacco S, Mirisola M, Quinn DI, Dorff TB, Kopchick JJ, Longo VD. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell. 2014 Jun 5;14(6):810-23. doi: 10.1016/j.stem.2014.04.014. Erratum in: Cell Stem
Cell. 2016 Feb 4;18(2):291-2. PMID: 24905167; PMCID: PMC4102383. https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(14)00151-9
8 Hannan, M. A., Rahman, M. A., Rahman, M. S., Sohag, A., Dash, R., Hossain, K. S., Farjana, M., & Uddin, M. J. (2020). Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response. Immunology letters, 226, 38–45. https://doi.org/10.1016/j.imlet.2020.07.001
9 Hannan, M. A., Rahman, M. A., Rahman, M. S., Sohag, A., Dash, R., Hossain, K. S., Farjana, M., & Uddin, M. J. (2020). Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response. Immunology letters, 226, 38–45. https://doi.org/10.1016/j.imlet.2020.07.001
10 Dias, G.P., Murphy, T., Stangl, D. et al. Intermittent fasting enhances long-term memory consolidation, adult hippocampal neurogenesis, and expression of longevity gene Klotho. Mol Psychiatry 26, 6365–6379 (2021)
11 Kai Liu, Bo Liu, Leonie K. Heilbronn, Intermittent fasting: What questions should we be asking?, Physiology & Behavior, Volume 218, 2020, 112827, ISSN 0031-9384, https://doi.org/10.1016/j.physbeh.2020.112827.
12 Lebofsky, J. Should You Do Intermittent Fasting When Having Your Period?. Should You Do Intermittent Fasting When Having Your Period? - WeFast


Ch. 49: Ketogenic Diet

1 D’Andrea Meira, I., Romão, T. T., Pires do Prado, H. J., Krüger, L. T., Pires, M. E., & da Conceição, P. O. (2019). Ketogenic diet and epilepsy: What we know so far. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00005
2 Paoli, A., Bosco, G., Camporesi, E. M., & Mangar, D. (2015). Ketosis, ketogenic diet and food intake control: A complex relationship. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00027
3 Sreenivas, S. (n.d.). Keto Diet: A beginner’s guide. WebMD. Retrieved September 6, 2022, from https://www.webmd.com/diet/keto-diet-for-beginners
4 Masood W, Annamaraju P, Uppaluri KR. Ketogenic Diet. [Updated 2022 Jun 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499830/
5 Snetselaar, L. G., de Jesus, J. M., DeSilva, D. M., & Stoody, E. E. (2021). Dietary guidelines for Americans, 2020–2025. Nutrition Today, 56(6), 287–295. https://doi.org/10.1097/nt.0000000000000512
6 Masood W, Annamaraju P, Uppaluri KR. Ketogenic Diet. [Updated 2022 Jun 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499830/
7 Nieman, D. C., Gillitt, N. D., Henson, D. A., Sha, W., Shanely, R. A., Knab, A. M., Cialdella-Kam, L., & Jin, F. (2012). Bananas as an energy source during exercise: A metabolomics approach. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0037479
8 Gomez-Arbelaez, D., Crujeiras, A. B., Castro, A. I., Martinez-Olmos, M. A., Canton, A., Ordoñez-Mayan, L., Sajoux, I., Galban, C., Bellido, D., & Casanueva, F. F. (2018). Resting metabolic rate of obese patients under very low-calorie ketogenic diet. Nutrition & Metabolism, 15(1). https://doi.org/10.1186/s12986-018-0249-z
9 Volek, J. S., & Westman, E. C. (2002). Very-low-carbohydrate weight-loss diets revisited. Cleveland Clinic Journal of Medicine, 69(11), 849–849. https://doi.org/10.3949/ccjm.69.11.849
10 Noakes, M., Foster, P. R., Keogh, J. B., James, A. P., Mamo, J. C., & Clifton, P. M. (2006). Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutrition & Metabolism, 3(1). https://doi.org/10.1186/1743-7075-3-7
11 Daly, M. E., Paisey, R., Paisey, R., Millward, B. A., Eccles, C., Williams, K., Hammersley, S., MacLeod, K. M., & Gale, T. J. (2006). Short-term effects of severe dietary carbohydrate-restriction advice in type 2 diabetes-A randomized controlled trial. Diabetic Medicine, 23(1), 15–20. https://doi.org/10.1111/j.1464-5491.2005.01760.x
12 Yang, M., Bai, W., Jiang, B., Wang, Z., Wang, X., Sun, Y., Liu, F., Cui, G., Song, X., Li, J., & Wu, F. (2022). Effects of a ketogenic diet in women with PCOS with different uric acid concentrations: A prospective cohort study. Reproductive BioMedicine Online, 45(2), 391–400. https://doi.org/10.1016/j.rbmo.2022.03.023
13 Zupec-Kania, B. A., & Spellman, E. (2008). An overview of the ketogenic diet for pediatric epilepsy. Nutrition in Clinical Practice, 23(6), 589–596. https://doi.org/10.1177/0884533608326138
14 Włodarek, D. (2019). Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients, 11(1), 169. https://doi.org/10.3390/nu11010169
15 Dowis, K., & Banga, S. (2021). The potential health benefits of the ketogenic diet: A narrative review. Nutrients, 13(5), 1654. https://doi.org/10.3390/nu13051654
16 Seidelmann, S. B., Claggett, B., Cheng, S., Henglin, M., Shah, A., Steffen, L. M., Folsom, A. R., Rimm, E. B., Willett, W. C., & Solomon, S. D. (2018). Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. The Lancet Public Health, 3(9). https://doi.org/10.1016/s2468-2667(18)30135-x
17 Nettleton, J. A., Brouwer, I. A., Geleijnse, J. M., & Hornstra, G. (2017). Saturated fat consumption and risk of coronary heart disease and ischemic stroke: A science update. Annals of Nutrition and Metabolism, 70(1), 26–33. https://doi.org/10.1159/000455681
18 Batch, J. T., Lamsal, S. P., Adkins, M., Sultan, S., & Ramirez, M. N. (2020). Advantages and disadvantages of the Ketogenic Diet: A review article. Cureus. https://doi.org/10.7759/cureus.9639
19 Ma, W., Nguyen, L. H., Song, M., Wang, D. D., Franzosa, E. A., Cao, Y., Joshi, A., Drew, D. A., Mehta, R., Ivey, K. L., Strate, L. L., Giovannucci, E. L., Izard, J., Garrett, W., Rimm, E. B., Huttenhower, C., & Chan, A. T. (2021). Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Medicine, 13(1). https://doi.org/10.1186/s13073-021-00921-y
20 Watanabe, M., Tuccinardi, D., Ernesti, I., Basciani, S., Mariani, S., Genco, A., Manfrini, S., Lubrano, C., & Gnessi, L. (2020). Scientific evidence underlying contraindications to the ketogenic diet: An update. Obesity Reviews, 21(10). https://doi.org/10.1111/obr.13053


Ch. 50: Mediterranean Diet

1 Nestle, M. (1995). Mediterranean diets: Historical and research overview. The American Journal of Clinical Nutrition, 61(6). https://doi.org/10.1093/ajcn/61.6.1313s
2 Lăcătușu, C.-M., Grigorescu, E.-D., Floria, M., Onofriescu, A., & Mihai, B.-M. (2019). The Mediterranean diet: From an environment-driven food culture to an emerging medical prescription. International Journal of Environmental Research and Public Health, 16(6), 942. https://doi.org/10.3390/ijerph16060942
3 Lăcătușu, C.-M., Grigorescu, E.-D., Floria, M., Onofriescu, A., & Mihai, B.-M. (2019). The Mediterranean diet: From an environment-driven food culture to an emerging medical prescription. International Journal of Environmental Research and Public Health, 16(6), 942. https://doi.org/10.3390/ijerph16060942
4 Mayo Foundation for Medical Education and Research. (2021, July 23). Mediterranean diet for heart health. Mayo Clinic. Retrieved September 14, 2022, from https://tinyurl.com/yffvb3hr.
5 Arija Val, V., Babio, N., Fernández-Ballart, J., & Serra-Majem, L. (2004). La Dieta Mediterránea y el mar: pescados [Mediterranean Diet and the sea: fishes]. Archivos latinoamericanos de nutricion, 54(2 Suppl 1), 72–75
6 Mazzocchi, A., Leone, L., Agostoni, C., & Pali-Schöll, I. (2019). The secrets of the Mediterranean diet. does [only] olive oil matter? Nutrients, 11(12), 2941. https://doi.org/10.3390/nu11122941
7 Minzer, S., Estruch, R., & Casas, R. (2020). Wine intake in the framework of a Mediterranean diet and chronic non-communicable diseases: A short literature review of the last 5 years. Molecules, 25(21), 5045 https://doi.org/10.3390/molecules25215045
8 Féart, C., Samieri, C., Allès, B., & Barberger-Gateau, P. (2012). Potential benefits of adherence to the Mediterranean diet on Cognitive Health. Proceedings of the Nutrition Society, 72(1), 140–152. https://doi.org/10.1017/s0029665112002959
9 Trichopoulou, A., & Vasilopoulou, E. (2000). Mediterranean diet and longevity. British Journal Of Nutrition, 84(6), 205–209. https://doi.org/10.1079/096582197388554
10 Trichopoulou, A., Martínez-González, M. A., Tong, T. Y. N., Forouhi, N. G., 367 Khandelwal, S., Prabhakaran, D., Mozaffarian, D., & de Lorgeril, M. (2014). Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Medicine, 12(1). https://doi.org/10.1186/1741-7015-12-112
11 van den Brandt, P. A. (2011). The impact of a Mediterranean diet and healthy lifestyle on premature mortality in men and women. American Journal of Clinical Nutrition, 94(3), 913–920. https://doi.org/10.3945/ajcn.110.008250
12 Milenkovic, T., Bozhinovska, N., Macut, D., Bjekic-Macut, J., Rahelic, D., Velija Asimi, Z., & Burekovic, A. (2021). Mediterranean diet and type 2 diabetes mellitus: A perpetual inspiration for the scientific world. A Review. Nutrients, 13(4), 1307. https://doi.org/10.3390/nu13041307
13 Spence, J. (2019). Nutrition and risk of stroke. Nutrients, 11(3), 647. https://doi.org/10.3390/nu11030647
14 Magriplis, E., Panagiotakos, D., Kyrou, I., Tsioufis, C., Mitsopoulou, A.-V., Karageorgou, D., Dimakopoulos, I., Bakogianni, I., Chourdakis, M., Micha, R., Michas, G., Ntouroupi, T., Tsaniklidou, S.-M., Argyri, K., & Zampelas, A. (2020). Presence of hypertension is reduced by Mediterranean diet adherence in all individuals with a more pronounced effect in the
obese: The Hellenic National Nutrition and Health Survey (HNNHS). Nutrients, 12(3), 853 https://doi.org/10.3390/nu12030853
15 Ghosh, T. S., Rampelli, S., Jeffery, I. B., Santoro, A., Neto, M., Capri, M., Giampieri, E., Jennings, A., Candela, M., Turroni, S., Zoetendal, E. G., Hermes, G. D., Elodie, C., Meunier, N., Brugere, C. M., Pujos-Guillot, E., Berendsen, A. M., De Groot, L. C., Feskins, E. J., … O’Toole, P. W. (2020). Mediterranean diet intervention alters the gut microbiome in older people
reducing frailty and improving health status: The nu-age 1-year dietary intervention across five European countries. Gut, 69(7), 1218–1228. https://doi.org/10.1136/gutjnl-2019-319654
16 Lourida, I., Soni, M., Thompson-Coon, J., Purandare, N., Lang, I. A., Ukoumunne, O. C., & Llewellyn, D. J. (2013). Mediterranean diet, cognitive function, and dementia. Epidemiology, 24(4), 479–489 https://doi.org/10.1097/ede.0b013e3182944410
17 Mentella, Scaldaferri, Ricci, Gasbarrini, & Miggiano. (2019). Cancer and mediterranean diet: A Review. Nutrients, 11(9), 2059. https://doi.org/10.3390/nu11092059
18 Ventriglio, A., Sancassiani, F., Contu, M. P., Latorre, M., Di Slavatore, M., Fornaro, M., & Bhugra, D. (2020). Mediterranean diet and its benefits on health and Mental Health: A Literature Review. Clinical Practice & Epidemiology in Mental Health, 16(1), 156–164. https://doi.org/10.2174/1745017902016010156
19 Davis, C., Bryan, J., Hodgson, J., & Murphy, K. (2015). Definition of the Mediterranean diet; a literature review. Nutrients, 7(11), 9139–9153. https://doi.org/10.3390/nu7115459
20 Mayo Foundation for Medical Education and Research. (2021, July 23). Mediterranean diet for heart health. Mayo Clinic. Retrieved September 14, 2022, from https://tinyurl.com/yffvb3hr.


Ch. 51: The Wahls Protocol Diet

1 Burch, K. (2022, March 14). Some people see remarkable benefit on the Wahls Protocol. Verywell Health. Retrieved September 16, 2022, from https://www.verywellhealth.com/reasons-to-try-the-wahls-protocol-for-ms-5218077
2 Dr. Terry Wahls, MD & Author. (2019, September 27). My story. Dr. Terry Wahls, MD & Author. Retrieved September 16, 2022, from https://terrywahls.com/about/about-terrywahls/
3 Lindberg, S. (2019, January 25). The Wahls Diet for autoimmune disorders: 5 tasty recipes. Healthline. Retrieved September 15, 2022, from https://www.healthline.com/health/wahls-diet-recipes-for-multiple-sclerosis
4 The wahls protocol and HD - hopes Huntington’s disease information. (n.d.). Retrieved September 16, 2022, from https://hopes.stanford.edu/the-wahls-protocol-and-hd/
5 AutoimmuneMom. (2021, August 20). Wahls protocol: Restoring your cells to regain function and mobility lost from autoimmune. Autoimmune Association. Retrieved September
16, 2022, from https://autoimmune.org/wahls-protocol-autoimmune-diet/6 Pagán, C. N. (n.d.). Wahls Protocol Diet for ms treatment: Effectiveness and foods. Web-MD. Retrieved September 15, 2022, from https://www.webmd.com/multiple-sclerosis/wahl-diet-ms
7 Konijeti, G. G., Kim, N. M., Lewis, J. D., Groven, S., Chandrasekaran, A., Grandhe, S., Diamant, C., Singh, E., Oliveira, G., Wang, X., Molparia, B., & Torkamani, A. (2017). Efficacy of the autoimmune protocol diet for inflammatory bowel disease. Inflammatory Bowel Diseases, 23(11), 2054–2060. https://doi.org/10.1097/mib.0000000000001221
8 Khanna, S., Jaiswal, K. S., & Gupta, B. (2017). Managing rheumatoid arthritis with dietary interventions. Frontiers in Nutrition, 4. https://doi.org/10.3389/fnut.2017.00052
9 Abbott, R. D., Sadowski, A., & Alt, A. G. (2019). Efficacy of the autoimmune protocol diet as part of a multi-disciplinary, supported lifestyle intervention for Hashimoto’s thyroiditis. Cureus. https://doi.org/10.7759/cureus.4556
10 Wahls, T. L., Chenard, C. A., & Snetselaar, L. G. (2019). Review of two popular eating plans within the multiple sclerosis community: Low saturated fat and modified Paleolithic. Nutrients, 11(2), 352. https://doi.org/10.3390/nu11020352
11 Lindberg, S. (2019, January 25). The Wahls Diet for autoimmune disorders: 5 tasty recipes. Healthline. Retrieved September 16, 2022, from https://www.healthline.com/health/wahls-diet-recipes-for-multiple-sclerosis
12 Burch, K. (2022, March 14). Some people see remarkable benefit on the Wahls Protocol. Verywell Health. Retrieved September 16, 2022, from https://www.verywellhealth.com/reasons-to-try-the-wahls-protocol-for-ms-5218077#citation-3
13 Gohil K. Multiple Sclerosis: Progress, but No Cure. P T. 2015 Sep;40(9):604-5. PMID: 26417181; PMCID: PMC4571850.368